

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS AFFILIATED COLLEGES REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM

B. E. MECHANICAL ENGINEERING

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

- **I.** Effectuating success in careers by exploring with the design, digital and computational analysis of engineering systems, experimentation and testing, smart manufacturing, technical services, and research.
- **II.** Amalgamating effectively with stakeholders to update and improve their core competencies and abilities to ethically compete in the ever-changing multicultural global enterprise.
- III. To encourage multi-disciplinary research and development to foster advanced technology, and to nurture innovation and entrepreneurship in order to compete successfully in the global economy.
- To globally share and apply technical knowledge to create new opportunities that proactively advances our society through team efforts and to solve various challenging technical, environmental and societal problems.
- V. To create world class mechanical engineers capable of practice engineering ethically with a solid vision to become great leaders in academia, industries and society.

PROGRAM OUTCOMES (POs)

PO GRADUATE ATTRIBUTE

- Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- Problem analysis: Identify, formulate, review research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- 4 **Conduct investigations of complex problems**: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
- The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

- 7 **Environment and sustainability**: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- 8 **Ethics**: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- 9 **Individual and team work**: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- 10 **Communication:** Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

On successful completion of the Mechanical Engineering Degree programme, the Graduates shall exhibit the following:

- 1. Apply the knowledge gained in Mechanical Engineering for design and development and manufacture of engineering systems.
- 2. Apply the knowledge acquired to investigate research-oriented problems in mechanical engineering with due consideration for environmental and social impacts.
- 3. Use the engineering analysis and data management tools for effective management of multidisciplinary projects.

PEO's - PO's& PSO's MAPPING:

PEO	РО			7										PSO		
	1	2	3		4	5	6	7	8	9	10	11	12	1	2	3
I.	3	3	3		3	3	3	3	3	3	3	3	3	3	3	3
II.	3	2	2		2	2	1	1	1	3		2	1	2	3	3
III.	3	1	2	1	1	2	2	1		1	2		3	3	2	2
IV.	2	2	2		2	2		2				1	2	2	3	3
V.	3	2	2	7	2	1	3	2	2	2	1	1	3	3	2	2

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS AFFILIATED COLLEGES

REGULATIONS 2021

CHOICE BASED CREDIT SYSTEM B. E. MECHANICAL ENGINEERING

CURRICULUM FOR SEMESTERS I TO VIII AND SYLLABI FOR SEMESTERS III AND IV SEMESTER I

PERIODS PER **TOTAL** COURSE CATE -SL. **CREDITS COURSE TITLE** WEEK CONTACT NO. CODE GORY **PERIODS** Т Р IP3151 Induction Programme 0 THEORY HS3151 2. Professional English - I **HSMC** 3 0 3 3 MA3151 Matrices and Calculus 0 3. **BSC** 3 1 4 4 PH3151 4. **Engineering Physics BSC** 3 0 0 3 3 CY3151 5. **Engineering Chemistry** BSC 3 0 0 3 3 GE3151 Problem Solving and Python 6. ESC 3 0 0 3 3 Programming GE3152 அறிவியல் தமிழ் / 7. **HSMC** 0 0 1 1 Scientific Thoughts in Tamil **PRACTICAL** GE3171 Problem Solving and Python 0 ESC 0 4 4 2 Programming Laboratory 8 BS3171 Physics and Chemistry 4 BSC 0 0 4 2 Laboratory 9 GE3172 English Laboratory \$ EEC 0 0 2 2 1 27 TOTAL 16 10 22

\$ Skill Based Course

SEMESTER II

SL. NO.	COURSE	COURSE TITLE	CATE - GORY	PEF	RIODS		TOTAL CONTACT	CREDITS
				L	T	Р	PERIODS	
THEO	RY							
1.	HS3251	Professional English - II	HSMC	2	0	0	2	2
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4
3.	PH3251	Materials Science	BSC	3	0	0	3	3
4.	BE3251	Basic Electrical and Electronics Engineering	ESC	3	0	0	3	3
5.	GE3251	Engineering Graphics	ESC	2	0	4	6	4
6.	GE3252	தமிழர் மரபு /Heritage of Tamils	HSMC	1	0	0	1	1
7.		NCC Credit Course Level 1#	-	2	0	0	2	2
PRAC	TICAL							
8.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2
9.	9. BE3271 Basic Electrical and Electronics Engineering Laboratory		ESC	0	0	4	4	2
10.	10. GE3272 Communication Laboratory / Foreign Language \$		EEC	0	0	4	4	2
			TOTAL	14	1	16	31	23

^{*} NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

^{\$} Skill Based Course

SEMESTER III

SL. NO.	COURSE	COURSE TITLE	CATE GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.	CODE		GOKT	L	Т	Р	PERIODS	
THEC	RY							
1.	MA3351	Transforms and Partial Differential Equations	BSC	3	1	0	4	4
2.	ME3351	Engineering Mechanics	ESC	3	0	0	3	3
3.	ME3391	Engineering Thermodynamics	PCC	3	0	0	3	3
4.	CE3391	Fluid Mechanics and Machinery	ESC	3	1	0	4	4
5.	ME3392	Engineering Materials and Metallurgy	PCC	3	0	0	3	3
6.	ME3393	Manufacturing Processes	PCC	3	0	0	3	3
PRAC	CTICALS							
7.	ME3381	Computer Aided Machine Drawing	ESC	0	0	4	4	2
8.	ME3382	Manufacturing Technology Laboratory	PCC	0	0	4	4	2
9.	GE3361	Professional Development ^{\$}	EEC	0	0	2	2	1
			TOTAL	18	2	10	30	25

\$ Skill Based Course

SEMESTER IV

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY	PERIODS PER WEEK L T P		EEK	TOTAL CONTACT PERIODS	CREDITS				
THE	ORY											
1.	ME3491	Theory of Machines	PCC	3	0	0	3	3				
2.	ME3451	Thermal Engineering	PCC	4	0	0	4	4				
3.	ME3492	Hydraulics and Pneumatics	PCC	3	0	0	3	3				
4.	ME3493	Manufacturing Technology	PCC	3	0	0	3	3				
5.	CE3491	Strength of Materials	PCC	3	0	0	3	3				
6.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2				
7.		NCC Credit Course Level 2#		3	0	0	3	3#				
PRA	CTICALS											
8.	CE3481	Strength of Materials and Fluid Machinery Laboratory	PCC	0	0	4	4	2				
9.	ME3461	Thermal Engineering Laboratory	PCC	0	0	4	4	2				
			TOTAL	18	0	8	26	22				

NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER V

S. NO.	COURSE	COURSE TITLE	CATE GORY		ERIO ER W	DDS EEK	TOTAL CONTACT	CREDITS
NO.	CODL		GOKT	L	T	Р	PERIODS	
THE	ORY							
1.	ME3591	Design of Machine Elements	PCC	4	0	0	4	4
2.	ME3592	Metrology and Measurements	PCC	3	0	0	3	3
3.		Professional Elective I	PEC	-	1		-	3
4.		Professional Elective II	PEC	-	-	-	-	3
5.		Professional Elective III	PEC	-	-	-	-	3
6.		Mandatory Course-I&	MC	3	0	0	3	0
PRA	CTICALS							
7.	ME3511	Summer Internship*	EEC	0	0	0	0	1
8.	ME3581	Metrology and Dynamics Laboratory	PCC	0	0	4	4	2
			TOTAL	-	-	-	-	19

^{*}Two weeks Summer Internship carries one credit and it will be done during IV semester summer vacation and same will be evaluated in V semester.

SEMESTER VI

S. NO.	COURSE CODE	COURSE TITLE	CATE GORY		ERIO ER W	DDS EEK P	TOTAL CONTACT PERIODS	CREDITS
THEC	RY							
1.	ME3691	Heat and Mass Transfer	PCC	3	1	0	4	4
2.		Professional Elective IV	PEC	d	-	-	-	3
3.		Professional Elective V	PEC	_	-	-	-	3
4.		Professional Elective VI	PEC	-	-	-	-	3
5.		Professional Elective VII	PEC	-	-	-	-	3
6.		Open Elective – J*	OEC	3	0	0	3	3
7.		Mandatory Course-II&	MC	3	0	0	3	0
8.		NCC Credit Couse Level 3#		3	0	0	3	3#
PRAC	TICALS							
9.	ME3681	CAD/CAM Laboratory	PCC	0	0	4	4	2
10.	ME3611	Heat Transfer Laboratory	PCC	0	0	4	4	2
			TOTAL	-	-	-	-	23

^{*}Open Elective – I shall be chosen from the emerging technologies.

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

[&]amp; Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC-II)

^{*} NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA

SEMESTER VII / VIII*

S.	S. COURSE NO. CODE	COURSE TITLE	CATE		ERIOD R WE		TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	T	Р	PERIODS	
THEC	DRY							
1.	ME3791	Mechatronics and IoT	PCC	3	0	0	3	3
2.	ME3792	Computer Integrated Manufacturing	PCC	3	0	0	3	3
3.	GE3791	Human Values and Ethics	HSMC	2	0	0	2	2
4.	GE3792	Industrial Management	HSMC	3	0	0	3	3
5.		Open Elective – II**	OEC	3	0	0	3	3
6.		Open Elective – III***	OEC	3	0	0	3	3
7.		Open Elective – IV***	OEC	3	0	0	3	3
PRAC	CTICALS							
8.	ME3781	Mechatronics and IoT Laboratory	PCC	0	0	4	4	2
9.	ME3711	Summer Internship#	EEC	0	0	0	0	1
			TOTAL	20	0	4	24	23

#Two weeks Summer Internship carries one credit and it will be done during VI semester summer vacation and same will be evaluated in VII semester.

SEMESTER VIII /VII*

S. NO.	COURSE	COURSE TITLE	CATE GORY		IODS I NEEK	PER	TOTAL CONTACT	CREDITS
NO.	CODE		GORT	L	Т	Р	PERIODS	
PRAG	CTICALS							
1.	ME3811	Project Work / Internship	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

TOTAL CREDITS:167

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

^{**}Open Elective – II shall be chosen from the emerging technologies.
***Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes).

MANDATORY COURSES I

SI.	Course Code	Course Title	Cate		riod: r we		Total contact	Credits
No.			Gory	L	Т	Р	periods	
1.	MX3081	Introduction to Women and Gender Studies	MC	3	0	0	3	0
2.	MX3082	Elements of Literature	MC	3	0	0	3	0
3.	MX3083	Film Appreciation	MC	3	0	0	3	0
4.	MX3084	Disaster Management	MC	3	0	0	3	0

MANDATORY COURSES II

	MANDATORT COURSES II												
SI. No.	Course Code	Course Title	Cate Gory		Periods per week L T P		Total Contact Periods	Credits					
1.	MX3085	Well Being with traditional practices (Yoga, Ayurveda and Siddha)	MC	3	0	0	3	0					
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3	0					
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0					
4.	MX3088	State, Nation Building and Politics in India	MC	3	0	0	3	0					
5.	MX3089	Industrial Safety	MC	. 3	0	0	3	0					

PROFESSIONAL ELECTIVE COURSES: VERTICALS

	I	T		1	_					
VERTICAL 1	VERTICAL 2	VERTICAL 3	VERTICAL 4	VERTICAL 5	VERTICAL 6	VERTICAL 7	VERTICAL 8	VERTICAL 9	VERTICAL 10	VERTICAL 11
MODERN MOBILITY SYSTEMS	PRODUCT AND PROCESS DEVELOPMENT	ROBOTICS AND AUTOMATION	DIGITAL AND GREEN MANUFACTURING	PROCESS EQUIPMENT AND PIPING DESIGN	CLEAN AND GREEN ENERGY TECHNOLOGIES	COMPUTATIONAL ENGINEERING	LOGISTICS AND SUPPLY CHAIN MANAGEMENT	DIVERSIFIED COURSES GROUP 1	DIVERSIFIED COURSES GROUP 2	DIVERSIFIED COURSES GROUP 3
Automotive Materials, Components, Design & Testing	Value Engineering	Sensors and Instrumentation	Digital Manufacturing and IoT	Design of Pressure Vessels	Bioenergy Conversion Technologies	Computational Solid Mechanics	Automation in Manufacturing	Automobile Engineering	Turbo Machines	Advanced Vehicle Engineering
Conventional and Futuristic Vehicle Technology	Additive Manufacturing	Electrical Drives and Actuators	Lean Manufacturing	Failure Analysis and NDT Techniques	Carbon Footprint estimation and reduction techniques	Computational Fluid Dynamics and Heat transfer	Warehousing Automation	Measurements and Controls	Non-traditional Machining Processes	Advanced Internal Combustion Engineering
Renewable Powered Off Highway Vehicles and Emission Control Technology	CAD/CAM	Embedded Systems and Programming	Modern Robotics	Material Handling and solid processing Equipment	Energy Conservation in Industries	Theory on Computation and Visualization	Material Handling Equipment, Repair and Maintenance	Design Concepts in Engineering	Industrial safety	Casting and Welding Processes
Vehicle Health Monitoring, Maintenance and Safety	Design For X	Robotics	Green Manufacturing Design and Practices		Energy Efficient Buildings	Computational Bio- Mechanics	Robotics	Composite Materials and Mechanics	Design of Transmission System	Process Planning and Cost Estimation
CAE and CFD Approach in Future Mobility	Ergonomics in Design	Smart Mobility and Intelligent Vehicles	Environment Sustainability and Impact Assessment	Thermal and Fired Equipment design	Energy Storage Devices	Advanced Statistics and Data Analytics	Container Logistics	Electrical Drives and Control	Thermal Power Engineering	Surface Engineering
Hybrid and Electric Vehicle Technology	New Product Development	Haptics and Immersive Technologies	Energy Saving Machinery and Components	Industrial Layout Design and Safety	Renewable Energy Technologies	CAD and CAE	Logistics in Manufacturing, Supply Chain and Distribution	Power Plant Engineering	Design for Manufacturing	Precision Manufacturing
Thermal Management of Batteries and Fuel Cells	Product Life Cycle Management	Drone Technologies	Green Supply Chain Management	Design Codes and Standards	Equipment for Pollution Control	Machine Learning for Intelligent Systems	Data Science	Refrigeration and Air Conditioning	Power Generation Equipment Design	Gas Dynamics and Jet Propulsion
-	-	-	-	-		-	-	Dynamics of Ground Vehicles	-	Operational Research

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation / diversified group. Students are permitted to choose all the Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (rowwise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E./B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to the Regulations 2021, Clause 4.10.

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL 1: MODERN MOBILITY SYSTEMS

SI.	Course	Occurs Title	Category	F	Perio		Total Contact	0
No.	Code	Course Title		L	Т	Р	period	Credits
1.	CME331	Automotive Materials, Components, Design & Testing	PEC	2	0	2	4	3
2.	CME332	Conventional and Futuristic Vehicle Technology	PEC	3	0	0	3	3
3.	CME333	Renewable Powered Off Highway Vehicles and Emission Control Technology	PEC	3	0	0	3	3
4.	CME334	Vehicle Health Monitoring, Maintenance and Safety	PEC	3	0	0	3	3
5.	CME335	CAE and CFD Approach in Future Mobility	PEC	2	0	2	4	3
6.	CME336	Hybrid and Electric Vehicle Technology	PEC	3	0	0	3	3
7.	CME337	Thermal Management of Batteries and Fuel Cells	PEC	3	0	0	3	3

VERTICAL 2: PRODUCT AND PROCESS DEVELOPMENT

SI. No.	Course Code	Course Title	Category		Perio er we		Total Contact	Credits
INO.	Code	Course ritte			T	Р	period	Credits
1.	CME338	Value Engineering	PEC	3	0	0	3	3
2.	CME339	Additive Manufacturing	PEC	2	0	2	4	3
3.	CME340	CAD/CAM	PEC	3	0	0	3	3
4.	CME341	Design For X	PEC	3	0	0	3	3
5.	CME342	Ergonomics in Design	PEC	3	0	0	3	3
6.	CME343	New Product Development	PEC	3	0	0	3	3
7.	CME344	Product Life Cycle Management	PEC	3	0	0	3	3

VERTICAL 3: ROBOTICS AND AUTOMATION

SI.	Course	Course Title	Category		eriod er we		Total Contact	Credits	
No.	Code	Course Title		L	T	Р	Period		
1.	MR3491	Sensors and Instrumentation	PEC	3	0	0	3	3	
2.	MR3392	Electrical Drives and Actuators	PEC	3	0	0	3	3	
3.	MR3492	Émbedded Systems and Programming	PEC	2	0	2	4	3	
4.	MR3691	Robotics	PEC	3	0	0	3	3	
5.	CMR338	Smart Mobility and Intelligent Vehicles	PEC	3	0	0	3	3	
6.	CME345	Haptics and Immersive Technologies	PEC	3	0	0	3	3	
7.	CRA332	Drone Technologies	PEC	3	0	0	3	3	

VERTICAL 4: DIGITAL AND GREEN MANUFACTURING

SI. No.	Course Code	Course Title	Category		Perio er we		Total Contact	Credits
				L	T	Р	Period	
1.	CME346	Digital Manufacturing and IoT	PEC	2	0	2	4	3
2.	CME347	Lean Manufacturing	PEC	3	0	0	3	3
3.	CME348	Modern Robotics	PEC	2	0	2	4	3
4.	CME349	Green Manufacturing Design and Practices	PEC	3	0	0	3	3
5.	CME350	Environment Sustainability and Impact Assessment	PEC	3	0	0	3	3
6.	CME351	Energy Saving Machinery and Components	PEC	3	0	0	3	3
7.	CME352	Green Supply Chain Management	PEC	3	0	0	3	3

VERTICAL 5: PROCESS EQUIPMENT AND PIPING DESIGN

SI.					Perio	ds	Total					
No.	Course	Course Title	Category	P	er we	week Contact		Credits				
	Code			L	Т	P	Period					
1.	CME353	Design of Pressure Vessels	PEC	3	0	0	3	3				
2.	CME354	Failure Analysis and NDT	PEC	2	0	2 '	4	3				
		Techniques										
3.	CME355	Material Handling and Solid	PEC	3	0	0	3	3				
		Processing Equipment										
4.	CME356	Rotating Machinery Design	PEC	3	0	0	3	3				
5.	CME357	Thermal and Fired Equipment	PEC	3	0	0	3	3				
		Design										
6.	CME358	Industrial Layout Design and	PEC	2	0	2	4	3				
		Safety										
7.	CME359	Design Codes and Standards	PEC	3	0	0	3	3				

VERTICAL 6: CLEAN AND GREEN ENERGY TECHNOLOGIES

SI. No.	Course Code	Course Title	Category	Periods Per week			Total contact	Credits
				L	Т	Р	Periods	
1.	CME360	Bioenergy Conversion Technologies	PEC	თ	0	0	3	3
2.	CME361	Carbon Footprint Estimation and Reduction Techniques	PEC	თ	0	0	3	3
3.	CME362	Energy Conservation in Industries	PEC	3	0	0	3	3
4.	CME363	Energy Efficient Buildings	PEC	3	0	0	3	3
5.	CME364	Energy Storage Devices	PEC	3	0	0	3	3
6.	CME365	Renewable Energy Technologies	PEC	3	0	0	3	3
7.	CME366	Equipment for Pollution Control	PEC	3	0	0	3	3

VERTICAL 7: COMPUTATIONAL ENGINEERING

SI. No.	Course Code	Course Title	Category		Periods Per week L T P		Total contact periods	Credits
1.	CME367	Computational Solid Mechanics	PEC	3	0	0	3	3
١.		•		3	U	U	3	3
2.	CME368	Computational Fluid Dynamics and Heat transfer	PEC	3	0	0	3	3
3.	CME369	Theory on Computation and Visualization	PEC	3	0	0	3	3
4.	CME370	Computational Bio-Mechanics	PEC	3	0	0	3	3
5.	CME371	Advanced Statistics and Data Analytics	PEC	3	0	0 •	3	3
6.	CME372	CAD and CAE	PEC	2	6	2	4	3
7.	CRA342	Machine Learning for Intelligent Systems	PEC	3	0	0	3	3

VERTICAL 8: LOGISTICS AND SUPPLY CHAIN MANAGEMENT

SI. No.	Course Code	Course Title	Category	Periods Per week		Total contact	Credits	
NO.	Code	Course Title		L	Т	Р	periods	Credits
1.	CME373	Automation in Manufacturing	PEC	3	0	0	3	3
2.	CME374	Warehousing Automation	PEC	3	0	0	3	3
3.	CME375	Material Handling Equipment,	PEC	3	0	0	3	3
		Repair and Maintenance						
4.	CME378	Robotics	PEC	3	0	0	3	3
5.	CME377	Container Logistics	PEC	3	0	0	3	3
6.	CME376	Logistics in Manufacturing, Supply	PEC	3	0	0	3	3
		Chain and Distribution						
7.	CME379	Data Science	PEC	3	0	0	3	3

VERTICAL 9: DIVERSIFIED COURSES GROUP 1

SI.	(3100)		Category		eriod er we	_	Total Contact	
No.	Code	Course Title		L	Т	Р	Periods	Credits
1.	CME380	Automobile Engineering	PEC	3	0	0	3	3
2.	ME3001	Measurements and Controls	PEC	3	0	0	3	3
3.	CME381	Design Concepts in Engineering	PEC	3	0	0	3	3
4.	CME382	Composite Materials and	PEC	3	0	0	3	3
		Mechanics						
5.	CME383	Electrical Drives and Control	PEC	3	0	0	3	3
6.	CME384	Power Plant Engineering	PEC	3	0	0	3	3
7.	CME385	Refrigeration and Air Conditioning	PEC	3	0	0	3	3
8.	CAU332	Dynamics of Ground Vehicles	PEC	3	0	0	3	3

VERTICAL 10: DIVERSIFIED COURSES GROUP 2

SI.	Course		Category		erioc er we		Total Contact	
No.	Code	Course Title		L	Т	Р	Periods	Credits
1.	CAE344	Turbo Machines	PEC	3	0	0	3	3
2.	CME387	Non-traditional Machining	PEC	3	0	0	3	3
		Processes						
3.	CME388	Industrial safety	PEC	3	0	0	3	3
4.	CME389	Design of Transmission System	PEC	3	0	0	3	3
5.	CME390	Thermal Power Engineering	PEC	3	0	0	3	3
6.	CME391	Design for Manufacturing	PEC	3	0	0	3	3
7.	CME392	Power Generation Equipment Design	PEC	3	0	0	3	3

VERTICAL 11: DIVERSIFIED COURSES GROUP 3

						4		
SI. No.	Course Code	Course Title	Category	'	Period Per we		Total Contact	Credits
140.	Oode	Oddise Title		L	T	Р	periods	Orealts
1.	CME393	Advanced Vehicle Engineering	PEC	3	0	0	3	3
2.	CME394	Advanced Internal Combustion	PEC	3	0	0	3	3
		Engineering						
3.	CME395	Casting and Welding Processes	PEC	3	0	0	3	3
4.	CME396	Process Planning and Cost	PEC	3	0	0	3	3
		Estimation						
5.	CME397	Surface Engineering	PEC	3	0	0	3	3
6.	CME398	Precision Manufacturing	PEC	3	0	0	3	3
7.	CME400	Gas Dynamics and Jet Propulsion	PEC	3	0	0	3	3
8.	CME399	Operational Research	PEC	3	0	0	3	3

OPEN ELECTIVES

(Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories).

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL. NO.	COURSE CODE	COURSE TITLE	CATE	PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.			GONT	١	Т	Р	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	IoT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	OCS354	Augmented and Virtual Reality	OEC	2	0	2	4	3

OPEN ELECTIVES - III

SL.	COURSE		CATE	PE	TOTAL			
NO.	CODE	COURSE TITLE	GORY	L	R WE	P	CONTACT PERIODS	CREDITS
1.	OHS351	English for Competitive Examinations	OEC	3	0	0	3	3
2.	OCE353	Lean Concepts, Tools And Practices	OEC	3	0	0	3	3
3.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
4.	OMG353	Democracy and Good Governance	OEC	3	0	0	3	3
5.	OME353	Renewable Energy Technologies	OEC	3	0	0	3	3
6.	OME354	Applied Design Thinking	OEC	2	0	2	4	3
7.	OMF351	Reverse Engineering	OEC	3	0	0	3	3
8.	OAS352	Space Engineering	OEC	3	0	0	3	3
9.	OIE354	Quality Engineering	OEC	3	0	0	3	3
10.	OSF351	Fire Safety Engineering	OEC	3	0	0	3	3
11.	OAE352	Fundamentals of Aeronautical Engineering	OEC	3	0	0	3	3
12.	OGI351	Remote Sensing Concepts	OEC	3	0	0	3	3
13.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
14.	OEN351	Drinking Water Supply and Treatment	OEC	3	0	0	3	3

15.	OCH351	Nano Technology	OEC	3	0	0	3	3
16.	OCH352	Functional Materials	OEC	3	0	0	3	3
17.	OBT352	Biomedical Instrumentation	OEC	3	0	0	3	3
18.	OFD352	Traditional Indian Foods	OEC	3	0	0	3	3
19.	OFD353	Introduction to food processing	OEC	3	0	0	3	3
20.	OPY352	IPR for Pharma Industry	OEC	3	0	0	3	3
21.	OTT351	Basics of Textile Finishing	OEC	3	0	0	3	3
22.	OTT352	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
23.	OTT353	Basics of Textile Manufacture	OEC	3	0	0	3	3
24.	OPE351	Introduction to Petroleum Refining and Petrochemicals	OEC	3	0	0	3	3
25.	OPE352	Energy Conservation and Management	OEC	3	0	0	3	3
26.	OPT351	Basics of Plastics Processing	OEC	3	0	0	3	3
27.	OEC351	Signals and Systems	OEC	3	0	0	3	3
28.	OEC352	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	3	3
29.	OBM351	Foundation Skills in integrated product Development	OEC	3	0	0	3	3
30.	OBM352	Assistive Technology	OEC	3	0	0	3	3
31.	OMA352	Operations Research	OEC	3	0	0	3	3
32.	OMA353	Algebra and Number Theory	OEC	3	0	0	3	3
33.	OMA354	Linear Algebra	OEC	3	0	0	3	3

OPEN ELECTIVES – IV

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		RIOI R WE	_	TOTAL CONTACT	CREDITS
NO.			GOKT	L	T	Р	PERIODS	
1.	OH\$352	Project Report Writing	OEC	3	0	0	3	3
2.	OCE354	Basics of Integrated Water Resources	OEC	3	0	0	3	3
		Management						
3.	OMA355	Advanced Numerical Methods	OEC	3	0	0	3	3
4.	OMA356	Random Processes	OEC	3	0	0	3	3
5.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3
6.	OMG354	Production and Operations	OEC	3	0	0	3	3

		Management for							
7	0140055	Entrepreneurs	050	_	_	_			-
7.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3	
8.	OME352	Additive Manufacturing	OEC	3	0	0	3	3	
9.	OME353	New Product Development	OEC	3	0	0	3	3	
10.	OME355	Industrial Design & Rapid Prototyping Techniques	OEC	2	0	2	4	3	
11.	OMF352	Micro and Precision Engineering	OEC	3	0	0	3	3	
12.	OAS353	Space Vehicles	OEC	3	0	0	3	3	
13.	OIM352	Management Science	OEC	3	0	0	3	3	
14.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3	4
15.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3	-
16.	OML352	Electrical, Electronic and Magnetic materials	OEC	3	0	0	3	3	=
17.	OML353	Nanomaterials and applications	OEC	3	0	0	3	3	=
	ORA353	Concepts in Mobile Robotics	OEC	3	0	0	3	3	-
18.	OMV351	Marine Propulsion	OEC	3	0	0	3	3	
19.	OMV352	Marine Merchant Vehicles	OEC	3	0	0	3	3	-
20.	OMV353	Elements of Marine Engineering	OEC	3	0	0	3	3	-
21.	OGI352	Geographical Information System	OEC	3	0	0	3	3	-
22.	OAI352	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3	
23.	OEN352	Biodiversity Conservation	OEC	3	0	0	3	3	
24.	OCH353	Energy Technology	OEC	3	0	0	3	3	
25.	OCH354	Surface Science	OEC	3	0	0	3	3	
26.	OBT353	Environment and Agriculture	OEC	3	0	0	3	3	=
27.	OFD354	Fundamentals of Food Engineering	OEC	3	0	0	3	3	-
28.	OFD355	Food safety and Quality Regulations	OEC	3	0	0	3	3	-
29.	OPY353	Nutraceuticals	OEC	3	0	0	3	3	1
30.	OTT354	Basics of Dyeing and Printing	OEC	3	0	0	3	3	
31.	OTT355	Fibre Science	OEC	3	0	0	3	3	1
32.	OTT356	Garment Manufacturing Technology	OEC	3	0	0	3	3	

33.	OPE354	Unit Operations in Petro Chemical Industries	OEC	3	0	0	3	3
34.	OPT352	Plastic Materials for Engineers	OEC	3	0	0	3	3
35.	OPT353	Properties and Testing of Plastics	OEC	3	0	0	3	3
36.	OEC353	VLSI Design	OEC	3	0	0	3	3
37.	OBM353	Wearable devices	OEC	3	0	0	3	_ 3
38.	OBM354	Medical Informatics	OEC	3	0	0	3	3

SUMMARY

							_			
			B.E. MI	ECHANIC	AL ENG	INEERIN	G			
S.No	Subject Area			Ci	redits pe	r Semest	er			Total Credits
		I	II		IV	٧	VI	VII/VIII	VIII/VII	Orouno
1	HSMC	4	3					5		13
2	BSC	12	7	4	2					25
3	ESC	5	11	9						24
4	PCC			11	20	9	8	8		56
5	PEC					9	12			21
6	OEC						3	9		12
7	EEC	1	2	1		1		1	10	13
8	Non-Credit /(Mandatory)					V	V			
	Total	22	23	25	22	19	23	23	10	167

ENROLLMENT FOR B.E. / B. TECH. (HONOURS) / MINOR DEGREE (OPTIONAL)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E. / B. Tech. (Honours) or Minor Degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 of Regulations 2021.

VERTICALS FOR MINOR DEGREE (In addition to all the verticals of other programmes)

	1			
Vertical I	Vertical II	Vertical III	Vertical IV	Vertical V
Fintech and Block Chain	Entrepreneurship	Public Administration	Business Data Analytics	Environment and Sustainability
Financial Management	Foundations of Entrepreneruship	Principles of Public Administration	Statistics for Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building and Leadership Management for Business	Constitution of India	Datamining for Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity and Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management for Business	Administrative Theories	Marketing and Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation and Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
		-	-	Integrated Energy Planning for Sustainable Development
-	-	-	-	Energy Efficiency for Sustainable Development

(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PEI WEE	₹	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	FERIOD3	
1.	CMG331	Financial Management	PEC	3	0	0	3	3
2.	CMG332	Fundamentals of Investment	PEC	3	0	0	3	3
3.	CMG333	Banking, Financial Services and Insurance	PEC	3	0	0	3	3
4.	CMG334	Introduction to Blockchain and its Applications	PEC	3	0	0	3	3
5.	CMG335	Fintech Personal Finance and Payments	PEC	3	0	0	3	3
6.	CMG336	Introduction to Fintech	PEC	3	0	0	3	3

VERTICAL 2: ENTREPRENERUSHIP

SL. NO.	COURSE CODE	COURSE TITLE	CATE GORY		PEI WEE	K	TOTAL CONTACT	CREDITS
				┙	T	P	PERIODS	
1.	CMG337	Entrepreneruship	PEC	3	0	0	3	3
2.		Team Building and Leadership Management for Business	PEC	3	0	0	З	3
3.	CMG339	Creativity and Innovation in Entrepreneurship	PEC	3	0	0	3	3
4.	CMG340	Principles of Marketing Management for Business	PEC	3	0	0	3	3
5.	CMG341	Human Resource Management for Entrepreneurs	PEC	3	0	0	3	3
6.	CMG342	Financing New Business Ventures	PEC	3	0	0	3	3

VERTICAL 3: PUBLIC ADMINISTRATION

SL.	COURSE CODE	COURSE TITLE	CATE GORY		ERIC PEI WEE	₹	TOTAL CONTACT	CREDITS
110.			OOKI	L	Т	Р	PERIODS	
1.	CMG343	Principles of Public Administration	PEC	3	0	0	3	3
2.	CMG344	Constitution of India	PEC	3	0	0	3	3
3.	CMG345	Public Personnel Administration	PEC	3	0	0	3	3
4.	CMG346	Administrative Theories	PEC	3	0	0	3	3
5.	CMG347	Indian Administrative System	PEC	3	0	0	3	3
6.	CMG348	Public Policy Administration	PEC	3	0	0	3	3

VERTICAL 4: BUSINESS DATA ANALYTICS

SL. NO.	COURSE	COURSE TITLE	CATE GORY		PEI VEE T	₹	TOTAL CONTACT PERIODS	CREDITS
1.	CMG349	Statistics for Management	PEC	3	0	0	3	3
2.	CMG350	Datamining for Business Intelligence	PEC	3	0	0	3	3
3.	CMG351	Human Resource Analytics	PEC	3	0	0	3	3
4.	CMG352	Marketing and Social Media Web Analytics	PEC	3	0	0	3	3
5.	CMG353	Operation and Supply Chain Analytics	PEC	3	0	0	3	3
6.	CMG354	Financial Analytics	PEC	3	0	0	3	3

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

SL. NO.	COURSE	COURSE TITLE	CATE GORY	,	PEI WEE	R K	TOTAL CONTACT PERIODS	CREDITS
				L	Т	Р	. 2.1.1020	
1.	CES331	Sustainable infrastructure Development	PEC	3	0	0	3	3
2.	CES332	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3
3.	CES333	Sustainable Bio Materials	PEC	3	0	0	3	3
4.	CES334	Materials for Energy Sustainability	PEC	3	0	0	3	3
5.	CES335	Green Technology	PEC	3	0	0	3	3
6.	CES336	Environmental Quality Monitoring and Analysis	PEC	3	0	0	3	3
7.	CES337	Integrated Energy Planning for Sustainable Development	PEC	3	0	0	3	3
8.	CES338	Energy Efficiency for Sustainable Development	PEC	3	0	0	3	3

COURSE OBJECTIVES:

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier, transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9+3

Formation of partial differential equations –Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types- Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

9+3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of PDE – Method of separation of variables - Fourier series solutions of one-dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two-dimensional equation of heat conduction (Cartesian coordinates only).

UNIT IV FOURIER TRANSFORMS

9+3

Statement of Fourier integral theorem— Fourier transform pair — Fourier sine and cosine transforms — Properties — Transforms of simple functions — Convolution theorem — Parseval's identity.

UNIT V Z - TRANSFORMS AND DIFFERENCE EQUATIONS

9+3

TOTAL: 60 PERIODS

Z-transforms - Elementary properties — Convergence of Z-transforms - — Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations — Solution of difference equations using Z - transforms.

OUTCOMES:

Upon successful completion of the course, students should be able to:

- 1. Understand how to solve the given standard partial differential equations.
- 2. Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- 3. Appreciate the physical significance of Fourier series techniques in solving one- and two-dimensional heat flow problems and one-dimensional wave equations.
- 4. Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- 5. Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems

TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics", 44thEdition, Khanna Publishers, New Delhi, 2018.
- 2. Kreyszig E, "Advanced Engineering Mathematics", 10th Edition, John Wiley, New Delhi, India, 2018. **REFERENCES:**
- 1. Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 10th Edition, Laxmi Publications Pvt. Ltd, 2021.
- 3. James. G., "Advanced Modern Engineering Mathematics", 4thEdition, Pearson Education, New Delhi, 2016.
- 4. Narayanan. S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.
- 6. Wylie. R.C. and Barrett. L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

ME3351

ENGINEERING MECHANICS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To Learn the use scalar and vector analytical techniques for analysing forces in statically determinate structures
- 2 To introduce the equilibrium of rigid bodies, vector methods and free body diagram
- To study and understand the distributed forces, surface, loading on beam and intensity.
- To learn the principles of friction, forces and to determine the apply the concepts of frictional forces at the contact surfaces of various engineering systems.
- 5 To develop basic dynamics concepts force, momentum, work and energy;

UNIT I STATICS OF PARTICLES

9

Fundamental Concepts and Principles, Systems of Units, Method of Problem Solutions, Statics of Particles - Forces in a Plane, Resultant of Forces, Resolution of a Force into Components, Rectangular Components of a Force, Unit Vectors. Equilibrium of a Particle- Newton's First Law of Motion, Space and Free-Body Diagrams, Forces in Space, Equilibrium of a Particle in Space.

UNIT II EQUILIBRIUM OF RIGID BODIES

Ś

Principle of Transmissibility, Equivalent Forces, Vector Product of Two Vectors, Moment of a Force about a Point, Varignon's Theorem, Rectangular Components of the Moment of a Force, Scalar Product of Two Vectors, Mixed Triple Product of Three Vectors, Moment of a Force about an Axis, Couple - Moment of a Couple, Equivalent Couples, Addition of Couples, Resolution of a Given Force into a Force -Couple system, Further Reduction of a System of Forces, Equilibrium in Two and Three Dimensions - Reactions at Supports and Connections.

UNIT III DISTRIBUTED FORCES

9

Centroids of lines and areas – symmetrical and unsymmetrical shapes, Determination of Centroids by Integration, Theorems of Pappus-Guldinus, Distributed Loads on Beams, Centre of Gravity of a Three-

Dimensional Body, Centroid of a Volume, Composite Bodies, Determination of Centroids of Volumes by Integration. Moments of Inertia of Areas and Mass - Determination of the Moment of Inertia of an Area by Integration, Polar Moment of Inertia, Radius of Gyration of an Area, Parallel-Axis Theorem, Moments of Inertia of Composite Areas, Moments of Inertia of a Mass - Moments of Inertia of Thin Plates, Determination of the Moment of Inertia of a Three-Dimensional Body by Integration.

UNIT IV FRICTION 9

The Laws of Dry Friction, Coefficients of Friction, Angles of Friction, Wedge friction, Wheel Friction, Rolling Resistance, Ladder friction.

UNIT V DYNAMICS OF PARTICLES

9

Kinematics - Rectilinear Motion and Curvilinear Motion of Particles. Kinetics- Newton's Second Law of Motion - Equations of Motions, Dynamic Equilibrium, Energy and Momentum Methods - Work of a Force, Kinetic Energy of a Particle, Principle of Work and Energy, Principle of Impulse and Momentum, Impact of bodies.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Illustrate the vector and scalar representation of forces and moments
- 2. Analyse the rigid body in equilibrium
- 3. Evaluate the properties of distributed forces
- 4. Determine the friction and the effects by the laws of friction
- 5. Calculate dynamic forces exerted in rigid body

TEXTBOOKS:

- 1. Beer Ferdinand P, Russel Johnston Jr., David F Mazurek, Philip J Cornwell, Sanjeev Sanghi, Vector Mechanics for Engineers: Statics and Dynamics, McGraw Higher Education., 12thEdition, 2019.
- 2. Vela Murali, "Engineering Mechanics-Statics and Dynamics", Oxford University Press, 2018.

REFERENCES:

- 1. Boresi P and Schmidt J, Engineering Mechanics: Statics and Dynamics, 1/e, Cengage learning, 2008.
- 2. Hibbeller, R.C., Engineering Mechanics: Statics, and Engineering Mechanics: Dynamics, 13th edition, Prentice Hall, 2013.
- 3. Irving H. Shames, Krishna Mohana Rao G, Engineering Mechanics Statics and Dynamics, 4thEdition, Pearson Education Asia Pvt. Ltd., 2005.
- 4. Meriam J L and Kraige L G, Engineering Mechanics: Statics and Engineering Mechanics: Dynamics, 7th edition, Wiley student edition, 2013.
- 5. Timoshenko S, Young D H, Rao J V and SukumarPati, Engineering Mechanics, 5thEdition, McGraw Hill Higher Education, 2013.

-47	РО		PSO												
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	1	2							2	3	1	1
2	3	2	2	1	2							2	3	1	1
3	3	2	3	1	2							2	3	1	2
4	3	2	3	1	2							2	3	1	2
5	3	2	3	1	2							2	3	1	2

ME3391

ENGINEERING THERMODYNAMICS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1 Impart knowledge on the basics and application of zeroth and first law of thermodynamics.
- Impart knowledge on the second law of thermodynamics in analysing the performance of thermal devices.
- 3 Impart knowledge on availability and applications of second law of thermodynamics
- 4 Teach the various properties of steam through steam tables and Mollier chart.
- 5 Impart knowledge on the macroscopic properties of ideal and real gases.

UNIT I BASICS, ZEROTH AND FIRST LAW

q

Review of Basics – Thermodynamic systems, Properties and processes Thermodynamic Equilibrium - Displacement work - P-V diagram. Thermal equilibrium - Zeroth law – Concept of temperature and Temperature Scales. First law – application to closed and open systems – steady and unsteady flow processes.

UNIT II SECOND LAW AND ENTROPY

9

Heat Engine – Refrigerator - Heat pump. Statements of second law and their equivalence & corollaries. Carnot cycle - Reversed Carnot cycle - Performance - Clausius inequality. Concept of entropy - T-s diagram - Tds Equations - Entropy change for a pure substance.

UNIT III AVAILABILITY AND APPLICATIONS OF II LAW

9

Ideal gases undergoing different processes - principle of increase in entropy. Applications of II Law. Highand low-grade energy. Availability and Irreversibility for open and closed system processes - I and II law Efficiency

UNIT IV PROPERTIES OF PURE SUBSTANCES

9

Steam - formation and its thermodynamic properties - p-v, p-T, T-v, T-s, h-s diagrams. PVT surface. Determination of dryness fraction. Calculation of work done and heat transfer in non-flow and flow processes using Steam Table and Mollier Chart.

UNIT V GAS MIXTURES AND THERMODYNAMIC RELATIONS

9

Properties of Ideal gas, real gas - comparison. Equations of state for ideal and real gases. vander Waal's relation - Reduced properties - Compressibility factor - Principle of Corresponding states - Generalized Compressibility Chart. Maxwell relations - TdS Equations - heat capacities relations - Energy equation, Joule-Thomson experiment - Clausius-Clapeyron equation.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Apply the zeroth and first law of thermodynamics by formulating temperature scales and calculating the property changes in closed and open engineering systems.
- 2. Apply the second law of thermodynamics in analysing the performance of thermal devices through energy and entropy calculations.
- 3. Apply the second law of thermodynamics in evaluating the various properties of steam through steam tables and Mollier chart

- 4. Apply the properties of pure substance in computing the macroscopic properties of ideal and real gases using gas laws and appropriate thermodynamic relations.
- 5. Apply the properties of gas mixtures in calculating the properties of gas mixtures and applying various thermodynamic relations to calculate property changes.

TEXTBOOKS:

- 1. Nag.P.K., "Engineering Thermodynamics", 6th Edition, Tata McGraw Hill (2017), New Delhi.
- 2. Natarajan, E., "Engineering Thermodynamics: Fundamentals and Applications", 2nd Edition (2014), Anuragam Publications, Chennai.

REFERENCES:

- 1. Cengel, Y and M. Boles, Thermodynamics An Engineering Approach, Tata McGraw Hill,9th Edition, 2019
- 2. Chattopadhyay, P, "Engineering Thermodynamics", 2nd Edition Oxford University Press, 2016.
- 3. Rathakrishnan, E., "Fundamentals of Engineering Thermodynamics", 2nd Edition, Prentice Hall of India Pvt. Ltd, 2006.
- 4. Claus Borgnakke and Richard E. Sonntag, "Fundamentals of Thermodynamics", 10th Edition, Wiley Eastern, 2019.
- 5. Venkatesh. A, "Basic Engineering Thermodynamics", Universities Press (India) Limited, 2007

	РО												PS	0	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	1							1/	2			
2	3	3	2	1								2			
3	3	3	2	1					1		1	2	3		3
4	3	3	2	1		1			2		1	2	3	2	
5	3	3	2	1		1			2		1	2	3	2	3
					Lov	v (1)	Med	ium (2	2);	High (3)				

COURSE OBJECTIVES:

- 1. To introduce the students about properties of the fluids, behaviour of fluids under static conditions.
- 2. To impart basic knowledge of the dynamics of fluids and boundary layer concept.
- 3. To expose to the applications of the conservation laws to a) flow measurements b) flow through pipes (both laminar and turbulent) and c) forces on pipe bends.
- 4. To exposure to the significance of boundary layer theory and its thicknesses.
- 5. To expose the students to basic principles of working of hydraulic machineries and to design Pelton wheel, Francis and Kaplan turbine, centrifugal and reciprocating pumps.

UNIT I FLUID PROPERTIES AND FLOW CHARACTERISTICS

10+3

Properties of fluids – Fluid statics - Pressure Measurements - Buoyancy and floatation - Flow characteristics - Eulerian and Lagrangian approach - Concept of control volume and system - Reynold's transportation theorem - Continuity equation, energy equation and momentum equation - Applications.

UNIT II FLOW THROUGH PIPES AND BOUNDARY LAYER

9+3

Reynold's Experiment - Laminar flow through circular conduits - Darcy Weisbach equation - friction factor - Moody diagram - Major and minor losses - Hydraulic and energy gradient lines - Pipes in series and parallel - Boundary layer concepts - Types of boundary layer thickness.

UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES

8+3

Fundamental dimensions - Dimensional homogeneity - Rayleigh's method and Buckingham Pi theorem - Dimensionless parameters - Similitude and model studies - Distorted and undistorted models.

UNIT IV TURBINES

9+3

Impact of jets - Velocity triangles - Theory of rotodynamic machines - Classification of turbines - Working principles - Pelton wheel - Modern Francis turbine - Kaplan turbine - Work done - Efficiencies - Draft tube - Specific speed - Performance curves for turbines - Governing of turbines.

UNIT V PUMPS

9+3

Classification of pumps - Centrifugal pumps - Working principle - Heads and efficiencies— Velocity triangles - Work done by the impeller - Performance curves - Reciprocating pump working principle - Indicator diagram and it's variations - Work saved by fitting air vessels - Rotary pumps.

TOTAL: 60 PERIODS

OUTCOMES:

On completion of the course, the student is expected to be able to

- 1. Understand the properties and behaviour in static conditions. Also, to understand the conservation laws applicable to fluids and its application through fluid kinematics and dynamics
- 2. Estimate losses in pipelines for both laminar and turbulent conditions and analysis of pipes connected in series and parallel. Also, to understand the concept of boundary layer and its thickness on the flat solid surface.
- 3. Formulate the relationship among the parameters involved in the given fluid phenomenon and to predict the performances of prototype by model studies
- 4. Explain the working principles of various turbines and design the various types of turbines.
- 5. Explain the working principles of centrifugal, reciprocating and rotary pumps and design the centrifugal and reciprocating pumps

TEXT BOOKS:

- 1. Modi P.N. and Seth, S.M. Hydraulics and Fluid Mechanics, Standard Book House, New Delhi, 22nd edition (2019)
- 2. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi. 2014.
- 3. Kumar K. L., Engineering Fluid Mechanics, Eurasia Publishing House(p) Ltd. New Delhi, 2016.

REFERENCES:

- 1. Fox W.R. and McDonald A.T., Introduction to Fluid Mechanics John-Wiley and Sons, Singapore, 2011.
- 2. Pani B S, Fluid Mechanics: A Concise Introduction, Prentice Hall of India Private Ltd, 2016.
- 3. Cengel Y A and Cimbala J M, Fluid Mechanics, McGraw Hill Education Pvt. Ltd., 2014.
- 4. S K Som; Gautam Biswas and S Chakraborty, Introduction to Fluid Mechanics and Fluid Machines, Tata McGraw Hill Education Pvt. Ltd., 2012.
- 5. Streeter, V. L. and Wylie E. B., Fluid Mechanics, McGraw Hill Publishing Co., 2010.

	РО										7		PSC		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	2	1	2	2	1	2	1	1	2	3	2	3
2	3	3	3	2	1	2	2	1	2	11	1	2	3	2	3
3	3	3	3	3	1	2	2	1	2	1	1	2	3	3	3
4	3	3	3	3	1	2	2	1	2	1	1	3	3	2	2
5	3	3	3	3	1	2	2	1	2	1	1	3	3	2	2
		•	•	•	Low	(1);	Medi	um (2));	ligh (3	3)	•		•	•

ME3392 ENGINEERING MATERIALS AND METALLURGY L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1 To learn the constructing the phase diagram and using of iron-iron carbide phase diagram for microstructure formation.
- 2 To learn selecting and applying various heat treatment processes and its microstructure formation.
- To illustrate the different types of ferrous and non-ferrous alloys and their uses in engineering field.
- 4 To illustrate the different polymer, ceramics and composites and their uses in engineering field.
- 5 To learn the various testing procedures and failure mechanism in engineering field.

UNIT I CONSTITUTION OF ALLOYS AND PHASE DIAGRAMS

Constitution of alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphous, eutectic, eutectoid, peritectic, and peritectoid reactions, Iron – Iron carbide equilibrium diagram. Classification of steel and cast-Iron microstructure, properties and application.

UNIT II HEAT TREATMENT

9

Definition – Full annealing, stress relief, recrystallisation and spheroidising –normalizing, hardening and tempering of steel. Isothermal transformation diagrams – cooling curves superimposed on I.T. diagram – continuous cooling Transformation (CCT) diagram – Austempering, Martempering – Hardenability, Jominy end quench test -case hardening, carburizing, Nitriding, cyaniding, carbonitriding – Flame and Induction hardening – Vacuum and Plasma hardening – Thermo-mechanical treatments- elementary ideas on sintering.

UNIT III FERROUS AND NON-FERROUS METALS

9

Effect of alloying additions on steel (Mn, Si, Cr, Mo, Ni, V,Ti& W) – stainless and tool steels – HSLA - Maraging steels – Grey, white, malleable, spheroidal – alloy cast irons, Copper and its alloys – Brass, Bronze and Cupronickel – Aluminium and its alloys; Al-Cu – precipitation strengthening treatment – Titanium alloys, Mg-alloys, Ni-based super alloys – shape memory alloys- Properties and Applications-overview of materials standards

UNIT IV NON-METALLIC MATERIALS

9

Polymers – types of polymers, commodity and engineering polymers – Properties and applications of PE, PP, PS, PVC, PMMA, PET, PC, PA, ABS, PAI, PPO, PPS, PEEK, PTFE, Thermoset polymers – Urea and Phenol formaldehydes –Nylon, Engineering Ceramics – Properties and applications of Al2O3, SiC, Si3N4, PSZ and SIALON – intermetallics- Composites- Matrix and reinforcement Materials-applications of Composites - Nano composites.

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS

9

Mechanisms of plastic deformation, slip and twinning – Types of fracture – fracture mechanics- Griffith's theory- Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell), Micro and nano-hardness tests, Impact test Izod and charpy, fatigue and creep failure mechanisms.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification.
- 2. Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
- 3. Clarify the effect of alloying elements on ferrous and non-ferrous metals.
- 4. Summarize the properties and applications of non-metallic materials.
- 5. Explain the testing of mechanical properties.

TEXT BOOKS:

- 1. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 9th edition, 2018.
- 2. Sydney H.Avner, "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1994

REFERENCES:

- 1. A. Alavudeen, N. Venkateshwaran, and J. T.WinowlinJappes, A Textbook of Engineering Materials and Metallurgy, Laxmi Publications, 2006.
- 2. Amandeep Singh Wadhwa, and Harvinder Singh Dhaliwal, A Textbook of Engineering Material and Metallurgy, University Sciences Press, 2008.

- 3. G.S. Upadhyay and Anish Upadhyay, "Materials Science and Engineering", Viva Books Pvt.Ltd, New Delhi, 2020.
- 4. Raghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt.Ltd. 6th edition, 2019.
- 5. Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, 2nd edition Re print 2019.

	РО												PSC)		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	1	3	2								2	2	1	2	
2	3	1	3	1		2		1				2	2	1	2	
3	3	1	3									2	2	1	2	
4	3	1	3				2					2	2	1	2	
5	3	1	3	2	2							2	2	1	2	
					Lo	w (1)	; M	ediun	n (2);	Н	igh (3					

ME3393

MANUFACTURING PROCESSES

L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To illustrate the working principles of various metal casting processes.
- 2. To learn and apply the working principles of various metal joining processes.
- 3. To analyse the working principles of bulk deformation of metals.
- 4. To learn the working principles of sheet metal forming process.
- 5. To study and practice the working principles of plastics molding.

UNIT – I METAL CASTING PROCESSES

(

Sand Casting – Sand Mould – Type of patterns - Pattern Materials – Pattern allowances – Molding sand Properties and testing – Cores –Types and applications – Molding machines – Types and applications – Melting furnaces – Principle of special casting processes- Shell, investment – Ceramic mould – Pressure die casting – low pressure, gravity- Tilt pouring, high pressure die casting- Centrifugal Casting – CO2 casting – Defects in Sand casting process-remedies

UNIT II METAL JOINING PROCESSES

ç

Fusion welding processes – Oxy fuel welding – Filler and Flux materials—Arc welding, Electrodes, Coating and specifications – Gas Tungsten arc welding –Gas metal arc welding - Submerged arc welding – Electro slag welding – Plasma arc welding — Resistance welding Processes -Electron beam welding –Laser beam Welding Friction welding – Friction stir welding – Diffusion welding – Thermit Welding, Weld defects – inspection &remedies – Brazing - soldering – Adhesive bonding.

UNIT III BULK DEFORMATION PROCESSES

9

Hot working and cold working of metals – Forging processes – Open, impression and closed die forging – cold forging- Characteristics of the processes – Typical forging operations – rolling of metals – Types of Rolling – Flat strip rolling – shape rolling operations – Defects in rolled parts – Principle of rod and wire drawing – Tube drawing – Principles of Extrusion – Types – Hot and Cold extrusion. Introduction to shaping operations.

UNIT IV SHEET METAL PROCESSES

Sheet metal characteristics – Typical shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods –special forming processes - Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning – Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming – Incremental forming.

UNIT V MANUFACTURE OF PLASTIC COMPONENTS

9

Types and characteristics of plastics – Molding of thermoplastics & Thermosetting polymers– working principles and typical applications – injection molding – Plunger and screw machines – Compression molding, Transfer Molding – Typical industrial applications – introduction to blow molding – Rotational molding – Film blowing – Extrusion – Thermoforming – Bonding of Thermoplastics- duff moulding.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Explain the principle of different metal casting processes.
- 2. Describe the various metal joining processes.
- 3. Illustrate the different bulk deformation processes.
- 4. Apply the various sheet metal forming process.
- Apply suitable molding technique for manufacturing of plastics components.

TEXT BOOKS:

- 1. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India,4th Edition, 2013
- 2. P.N.Rao Manufacturing Technology Volume 1 Mc Grawhill Education 5th edition, 2018.

REFERENCES:

- 1. Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006.
- 2. S. Gowri P. Hariharan, A.Suresh Babu, Manufacturing Technology I, Pearson Education, 2008.
- 3. Paul Degarma E, Black J.T and Ronald A. Kosher, Eligth Edition, Materials and Processes, in Manufacturing, Eight Edition, Prentice Hall of India, 1997.
- 4. Hajra Chouldhary S.K and Hajra Choudhury. AK., Elements of workshop Technology, volume I and II, Media promoters and Publishers Private Limited, Mumbai, 1997
- 5. Sharma, P.C., A Text book of production Technology, S.Chand and Co. Ltd., 2004

	РО												PSO)	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3		2			2	3	1	1	-	-	1	3	1	2
2	3		2			2	3	1	1	-	-	1	3	1	2
3	3		2	1		2	2	1	1	-	-	1	3	1	2
4	3		2			2	2	1	1	-	-	1	3	1	2
5	3		2		2	2	2	1	1	-	-	1	3	1	2
					Lo	ow (1)	; N	ledium	n (2);	Hi	gh (3)				

ME3381

COMPUTER AIDED MACHINE DRAWING

L T P C 0 0 4 2

COURSE OBJECTIVES:

- To acquaint the skills and practical experience in handling 2D drafting and 3D modelling software systems, standard drawing practices using fits and tolerances.
- 2 To prepare assembly drawings both manually and using standard CAD packages.
- To Preparing standard drawing layout for modeled parts, assemblies with BoM.

PART I DRAWING STANDARDS & FITS AND TOLERANCES

12

Code of practice for Engineering Drawing, BIS specifications – Welding symbols, riveted joints, keys, fasteners – Reference to hand book for the selection of standard components like bolts, nuts, screws, keys etc. - Limits, Fits – Tolerancing of individual dimensions IS919- Specification of Fits – Preparation of production drawings and reading of part and assembly drawings, basic principles of Geometric Dimensioning &Tolerancing.

PART II 2D DRAFTING

48

Drawing, Editing, Dimensioning, Layering, Hatching, Block, Array, Detailed Drawing.

- 1. Bearings Bush Bearing,
- 2. Valves Safety and Non-return Valves.
- 3. Couplings Flange, Oldham's, Muff, Gear couplings.
- 4. Joints Universal, Knuckle, Gib& Cotter, Strap, Sleeve &Cotter joints.
- 5. Engine parts Piston, Connecting Rod, Crosshead (vertical and horizontal), Stuffing box, multi-plate clutch.
- 6. Machine Components Screw Jack, Machine Vice, Lathe Tail Stock, Lathe Chuck, Plummer Block, Vane and Gear pumps.

Total: 20% of classes for theory classes and 80% of classes for practice

Note: 25% of assembly drawings must be done manually and remaining 75% of assembly drawings must be done by using any CAD software. The above tasks can be performed manually and using standard commercial 2D CAD software.

TOTAL:60 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Prepare standard drawing layout for modelled assemblies with BoM.
- 2. Model orthogonal views of machine components.
- 3. Prepare standard drawing layout for modelled parts

TEXT BOOKS:

- 1. Gopalakrishna K.R., "Machine Drawing", 17th Edition, Subhas Stores Books Corner, Bangalore, 2003.
- 2. N. D. Bhatt and V.M. Panchal, "Machine Drawing", 51st Edition, Charator Publishers, 2022.

REFERENCES:

- 1. K. L Narayana, P.Kannaiah, K.Venkata Reddy, Machine Drawing, 15 Edition, New Age International Publication
- 2. Goutam Pohit and Goutam Ghosh, "Machine Drawing with AutoCAD", 1st Edition, Pearson Education, 2004
- 3. Junnarkar, N.D., "Machine Drawing", 1st Edition, Pearson Education, 2004
- 4. N. Siddeshwar, P. Kanniah, V.V.S. Sastri," Machine Drawing", published by Tata McGrawHill,2006
- 5. S. Trymbaka Murthy, "A Text Book of Computer Aided Machine Drawing", CBS Publishers, New Delhi, 2007

	РО												PSC)	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	2			3				3	2		3	2	2	2
2	1	2			3				3	2		3	2	2	2
3	1	2			3				3	2		3	2	2	2
					L	.ow (1)); N	1ediun	n (2);	Hi	gh (3)				

ME3382 MANUFACTURING TECHNOLOGY LABORATORY L T P C 0 0 4 2

COURSE OBJECTIVES:

- 1 To Selecting appropriate tools, equipment's and machines to complete a given job.
- 2 To Performing various welding process using GMAW and fabricating gears using gear making machines.
- To Performing various machining process such as rolling, drawing, turning, shaping, drilling, milling and analysing the defects in the cast and machined components.

LIST OF EXPERIMENTS

- 1. Fabricating simple structural shapes using Gas Metal Arc Welding machine.
- 2. Preparing green sand moulds with cast patterns.
- 3. Taper Turning and Eccentric Turning on circular parts using lathe machine.
- 4. Knurling, external and internal thread cutting on circular parts using lathe machine.
- 5. Shaping Square and Hexagonal Heads on circular parts using shaper machine.
- 6. Drilling and Reaming using vertical drilling machine.
- 7. Milling contours on plates using vertical milling machine.
- 8. Cutting spur and helical gear using milling machine.
- 9. Generating gears using gear hobbing machine.
- 10. Generating gears using gear shaping machine.
- 11. Grinding components using cylindrical and centerless grinding machine.
- 12. Grinding components using surface grinding machine.
- 13. Cutting force calculation using dynamometer in milling machine
- 14. Cutting force calculation using dynamometer in lathe machine

LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qt
		у.
1.	Centre Lathes	7 Nos.
2.	Shaper	1 No.
3.	Horizontal Milling Machine	1 No.
4.	Vertical Milling Machine	1 No.
5.	Surface Grinding Machine	1 No.
6.	Cylindrical Grinding Machine	1 No.
7.	Radial Drilling Machine	1 No.
8.	Lathe Tool Dynamometer	1 No.
9.	Milling Tool Dynamometer	1 No.
10.	Gear Hobbing Machine	1 No.
11.	Gear Shaping Machine	1 No.
12.	Arc welding transformer with cables and holders	2 Nos.
13.	Oxygen and Acetylene gas cylinders, blow pipe and other welding	1 No.
	outfit	
14.	Moulding table, Moulding equipments	2 Nos.

TOTAL:60 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Demonstrate the safety precautions exercised in the mechanical workshop and join two metals using GMAW.
- 2. The students able to make the work piece as per given shape and size using machining process such as rolling, drawing, turning, shaping, drilling and milling.
- 3. The students become make the gears using gear making machines and analyze the defects in the cast and machined components

00	РО												PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3		1				1		2			1	1	2	2
2	3						1		2			1	1	2	2
3	3						1		2			1	1	2	2
					Lo	ow (1)	; N	lediun	າ (2) ;	Hi	gh (3)				

ME3491

THEORY OF MACHINES

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To study the basic components of mechanisms, analyzing the assembly with respect to the displacement, velocity, and acceleration at any point in a link of a mechanism and design cam mechanisms for specified output motions.
- 2 To study the basic concepts of toothed gearing and kinematics of gear trains
- 3 To Analyzing the effects of friction in machine elements
- To Analyzing the force-motion relationship in components subjected to external forces and analyzing of standard mechanisms.
- To Analyzing the undesirable effects of unbalances resulting from prescribed motions in mechanism and the effect of dynamics of undesirable vibrations.

UNIT – I KINEMATICS OF MECHANISMS

9

Mechanisms – Terminology and definitions – kinematics inversions of 4 bar and slide crank chain – kinematics analysis in simple mechanisms – velocity and acceleration polygons – Analytical methods – computer approach – cams – classifications – displacement diagrams - layout of plate cam profiles – derivatives of followers motion – circular arc and tangent cams.

UNIT – II GEARS AND GEAR TRAINS

9

Spur gear – law of toothed gearing – involute gearing – Interchangeable gears – Gear tooth action interference and undercutting – nonstandard teeth – gear trains – parallel axis gears trains – epicyclic gear trains – automotive transmission gear trains.

UNIT – III FRICTION IN MACHINE ELEMENTS

9

Surface contacts – Sliding and Rolling friction – Friction drives – Friction in screw threads – Bearings and lubrication – Friction clutches – Belt and rope drives – Friction aspects in brakes – Friction in vehicle propulsion and braking.

UNIT – IV FORCE ANALYSIS

9

Applied and Constrained Forces – Free body diagrams – static Equilibrium conditions – Two, Three and four members – Static Force analysis in simple machine members – Dynamic Force Analysis – Inertia Forces and Inertia Torque – D'Alembert's principle – superposition principle – dynamic Force Analysis in simple machine members

UNIT - V BALANCING AND VIBRATION

9

Static and Dynamic balancing – Balancing of revolving and reciprocating masses – Balancing machines – free vibrations – Equations of motion – natural Frequency – Damped Vibration – bending critical speed of simple shaft – Torsional vibration – Forced vibration – harmonic Forcing – Vibration isolation. (Gyroscopic principles)

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Discuss the basics of mechanism.
- 2. Solve problems on gears and gear trains.
- 3. Examine friction in machine elements.
- Calculate static and dynamic forces of mechanisms.
- 5. Calculate the balancing masses and their locations of reciprocating and rotating masses. Computing the frequency of free vibration, forced vibration and damping coefficient.

TEXT BOOKS:

- 1. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 2017.
- 2. Ramamurthi. V, "Mechanics of Machines", Narosa Publishing House, 3rd edition 2019.

REFERENCES:

- 1. AmitabhaGhosh and Asok Kumar Mallik, "Theory of Mechanisms and Machines", Affiliated East-West Pvt. Ltd., 1988.
- 2. Rao.J.S. and Dukkipati.R.V. "Mechanism and Machine Theory", New Age International Pvt. Ltd., 2nd edition,2014.
- 3. Rattan, S.S, "Theory of Machines", McGraw-Hill Education Pvt. Ltd., 5th edition 2019
- 4. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGraw-Hill, 2013.
- 5. Wilson and Sadler, Kinematics and Dynamics of Machinery, Pearson, 2008.

	РО												PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2		2			1				1	3		1
2	3	2	2		2			1				1	3		1
3	3	2	2		2			1				1	3		1
4	3	2	2		2			1				1	3		1
5	3	2	2		2			1				1	3		1
					Low (1); N	/lediur	n (2) ;	H	igh (3)					

ME3451

THERMAL ENGINEERING

L T P C

COURSE OBJECTIVES:

- To learn the concepts and laws of thermodynamics to predict the operation of thermodynamic cycles and performance of Internal Combustion(IC) engines and Gas Turbines.
- 2 To analyzing the performance of steam nozzle, calculate critical pressure ratio
- To Evaluating the performance of steam turbines through velocity triangles, understand the need for governing and compounding of turbines
- To analyzing the working of IC engines and various auxiliary systems present in IC engines
- 5 To evaluating the various performance parameters of IC engines

UNIT I THERMODYNAMIC CYCLES

12

Air Standard Cycles – Carnot, Otto, Diesel, Dual, Brayton – Cycle Analysis, Performance and Comparison, Basic Rankine Cycle, modified, reheat and regenerative cycles.

JNIT II STEAM NOZZLES AND INJECTOR

12

Types and Shapes of nozzles, Flow of steam through nozzles, Critical pressure ratio, Variation of mass flow rate with pressure ratio. Effect of friction. Metastable flow.

UNIT III STEAM AND GAS TURBINES

12

Types, Impulse and reaction principles, Velocity diagrams, Work done and efficiency – optimal operating conditions. Multi-staging, compounding and governing. Gas turbine cycle analysis – open and closed cycle. Performance and its improvement - Regenerative, Intercooled, Reheated cycles and their combination.

UNIT IV INTERNAL COMBUSTION ENGINES – FEATURES AND COMBUSTION

IC engine – Classification, working, components and their functions. Ideal and actual: Valve and port timing diagrams, p-v diagrams- two stroke & four stroke, and SI & CI engines – comparison. Geometric, operating, and performance comparison of SI and CI engines. Desirable properties and qualities of fuels. Air-fuel ratio calculation – lean and rich mixtures. Combustion in SI & CI Engines – Knocking – phenomena and control.

UNIT V INTERNAL COMBUSTION ENGINE PERFORMANCE AND AUXILIARY SYSTEMS 12
Performance and Emission Testing, Performance parameters and calculations. Morse and Heat Balance tests. Multipoint Fuel Injection system and Common rail direct injection systems. Ignition systems — Magneto, Battery and Electronic. Lubrication and Cooling systems. Concepts of Supercharging and Turbocharging — Emission Norms

TOTAL:60 PERIODS

OUTCOMES: At the end of the course the students would be able to

- 1. Apply thermodynamic concepts to different air standard cycles and solve problems.
- 2. To solve problems in steam nozzle and calculate critical pressure ratio.
- 3. Explain the flow in steam turbines, draw velocity diagrams, flow in Gas turbines and solve problems.
- 4. Explain the functioning and features of IC engine, components and auxiliaries.
- 5. Calculate the various performance parameters of IC engines

TEXT BOOKS:

- 1. Mahesh. M. Rathore, "Thermal Engineering", 1st Edition, Tata McGraw Hill, 2010.
- 2. Ganesan.V, "Internal Combustion Engines" 4th Edition, Tata McGraw Hill, 2012.

REFERENCES:

- 1. Ballaney. P, "Thermal Engineering", 25th Edition, Khanna Publishers, 2017.
- 2. Domkundwar, Kothandaraman, &Domkundwar, "A Course in Thermal Engineering", 6th Edition, DhanpatRai& Sons, 2011.
- 3. Gupta H.N, "Fundamentals of Internal Combustion Engines", 2nd Edition Prentice Hall of India, 2013.
- 4. Mathur M.L and Mehta F.S., "Thermal Science and Engineering", 3rd Edition, Jain Brothers Pvt. Ltd, 2017.
- 5. Soman. K, "Thermal Engineering", 2nd Edition, Prentice Hall of India, 2011.

	РО												PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1								1	2	1	
2	3	2	2	1								1	2	1	
3	3	2	2	1								1	2	1	
4	3	2	1	1								1	2	1	
5	3	2	1	1								1	2	1	
			U		Lo	ow (1)	; M	ledium	1 (2);	Hi	gh (3)			•	

ME3492

HYDRAULICS AND PNEUMATICS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To provide the knowledge on the working principles of fluid power systems.
- 2. To study the fluids and components used in modern industrial fluid power system.
- 3. To develop the design, construction and operation of fluid power circuits.
- 4. To learn the working principles of pneumatic power system and its components.
- 5. To provide the knowledge of trouble shooting methods in fluid power systems.

UNIT I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS

q

Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque- Problems, Sources of Hydraulic power: Pumping Theory-– Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of pumps – Fixed and Variable displacement pumps – Problems

UNIT – II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

9

Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Rotary Actuators-Hydraulic motors - Control Components: Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Accessories: Reservoirs, Pressure Switches – Filters –types and selection- Applications – Fluid Power ANSI Symbols – Problems

UNIT - III HYDRAULIC CIRCUITS AND SYSTEMS

9

Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double-Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Deceleration circuits, Sizing of hydraulic systems, Hydrostatic transmission, Electro hydraulic circuits, –Servo and Proportional valves – Applications- Mechanical, hydraulic servo systems.

UNIT – IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

ć

Properties of air –Air preparation and distribution – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit –classification- single cylinder and multi cylinder circuits-Cascade method –Integration of fringe circuits, Electro Pneumatic System – Elements – Ladder diagram – timer circuits-Problems, Introduction to fluidics and pneumatic logic circuits

UNIT – V TROUBLE SHOOTING AND APPLICATIONS

ç

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Conditioning of hydraulic fluids Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications- mobile hydraulics; Design of Pneumatic circuits for metal working, handling, clamping counter and timer circuits. – Low-cost Automation – Hydraulic and Pneumatic power packs, IOT in Hydraulics and pneumatics

Note: (Use of standard Design Data Book is permitted in the University examination)

TOTAL: 45 PERIODS

QUTCOMES: At the end of the course the students would be able to

- 1. Apply the working principles of fluid power systems and hydraulic pumps.
- Apply the working principles of hydraulic actuators and control components.
- 3. Design and develop hydraulic circuits and systems.
- 4. Apply the working principles of pneumatic circuits and power system and its components.
- 5. Identify various troubles shooting methods in fluid power systems.

TEXT BOOKS:

- 1. Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.
- 2. James A. Sullivan, "Fluid Power Theory and Applications", Fourth Edition, Prentice Hall, 1997

REFERENCES:

- 1. Jagadeesha. T., "Pneumatics Concepts, Design and Applications", Universities Press, 2015.
- 2. Joshi.P., Pneumatic Control", Wiley India, 2008.
- 3. Majumdar, S.R., "Oil Hydraulics Systems Principles and Maintenance", TataMcGraw Hill, 2001.
- 4. Shanmugasundaram.K., "Hydraulic and Pneumatic Controls". Chand & Co, 2006.
- 5. Srinivasan.R., "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 3rd edition, 2019.

	РО												PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	1								1	2	1	1
2	2	1	1	1								1	2	1	1
3	2	1	1	1								1	2	1	1
4	2	1	1	1								1	2	1	1
5	2	1	1	1								1	2	1	1
Low	(1);	Med	ium (2	2);	High	(3)									

ME3493

MANUFACTURING TECHNOLOGY

L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1 To study the concepts and basic mechanics of metal cutting and the factors affecting machinability
- 2 To learn working of basic and advanced turning machines.
- To teach the basics of machine tools with reciprocating and rotating motions and abrasive finishing processes.
- 4 To study the basic concepts of CNC of machine tools and constructional features of CNC.
- To learn the basics of CNC programming concepts to develop the part programme for Machine centre and turning centre

UNIT – I MECHANICS OF METAL CUTTING

9

Mechanics of chip formation, forces in machining, Types of chip, cutting tools – single point cutting tool nomenclature, orthogonal and oblique metal cutting, thermal aspects, cutting tool materials, tool wear, tool life, surface finish, cutting fluids and Machinability.

UNIT - II TURNING MACHINES

S

Centre lathe, constructional features, specification, operations – taper turning methods, thread cutting methods, special attachments, surface roughness in turning, machining time and power estimation. Special lathes - Capstan and turret lathes- tool layout – automatic lathes: semi-automatic – single spindle: Swiss type, automatic screw type – multi spindle

UNIT - III RECIPROCATING MACHINE TOOLS

9

Reciprocating machine tools: shaper, planer, slotter: Types and operations- Hole making: Drilling, reaming, boring, tapping, type of milling operations-attachments- types of milling cutters— machining time calculation - Gear cutting, gear hobbing and gear shaping — gear finishing methods Abrasive processes: grinding wheel — specifications and selection, types of grinding process — cylindrical grinding, surface grinding, centreless grinding, internal grinding - micro finishing methods

UNIT - IV CNC MACHINES

9

Computer Numerical Control (CNC) machine tools, constructional details, special features – Drives, Recirculating ball screws, tool changers; CNC Control systems – Open/closed, point-to-point/continuous - Turning and machining centres – Work holding methods in Turning and machining centres, Coolant systems, Safety features.

UNIT – V PROGRAMMING OF CNC MACHINE TOOLS

9

Coordinates, axis and motion, Absolute vs Incremental, Interpolators, Polar coordinates, Program planning, G and M codes, Manual part programming for CNC machining centers and Turning centers – Fixed cycles, Loops and subroutines, Setting up a CNC machine for machining.

TOTAL 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- Apply the mechanism of metal removal process and to identify the factors involved in improving machinability.
- 2. Describe the constructional and operational features of centre lathe and other special purpose lathes.
- 3. Describe the constructional and operational features of reciprocating machine tools.
- 4. Apply the constructional features and working principles of CNC machine tools.
- 5. Demonstrate the Program CNC machine tools through planning, writing codes and setting up CNC machine tools to manufacture a given component.

TEXT BOOKS:

- 1. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India,7th Edition, 2018.
- 2. Michael Fitzpatrick, Machining and CNC Technology, McGraw-Hill Education; 4th edition, 2018.

REFERENCES:

- 1. Roy. A. Lindberg, Processes and materials of manufacture, PHI / Pearson education, 2006.
- 2. Geofrey Boothroyd, "Fundamentals of Metal Machining and Machine Tools", McGraw Hill, 1984.
- 3. Rao. P.N "Manufacturing Technology," Metal Cutting and Machine Tools, Tata McGraw- Hill, New Delhi, 2009.
- 4. A. B. Chattopadhyay, Machining and Machine Tools, Wiley, 2nd edition, 2017.
- 5. Peter Smid, CNC Programming Handbook, Industrial Press Inc.,; Third edition, 2007

	РО												PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	1	1	1	3			3		2	3	3	2
2	3	3	3	1	1	1	3			3		2	3	2	2
3	3	3	3	1	1	1	3			3		2	3	2	2
4	3	3	2	1	1	1	3			3		2	3	2	2
5	3	3	3	1	1	1	3			3		2	3	2	3
Low	(1);	Med	ium (2);	High	(3)									

CE3491

STRENGTH OF MATERIALS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the concepts of stress, strain, principal stresses and principal planes.
- To study the concept of shearing force and bending moment due to external loads in determinate beams and their effect on stresses.
- To determine stresses and deformation in circular shafts and helical spring due to torsion.
- To compute slopes and deflections in determinate beams by various methods.
- To study the stresses and deformations induced in thin and thick shells.

UNIT I STRESS, STRAIN AND DEFORMATION OF SOLIDS

9

Rigid bodies and deformable solids – Tension, Compression and Shear Stresses - Deformation of simple and compound bars – Thermal stresses – Elastic constants - Volumertric strains – Stresses on inclined planes – Principal stresses and principal planes – Mohr's circle of stress.

UNIT II TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

9

Beams – Types - Transverse loading on beams – Shear force and Bending moment in beams – Cantilever, Simply supported and over hanging beams. Theory of simple bending – Bending stress distribution – Load carrying capacity – Proportioning of sections – Flitched beams – Shear stress distribution.

UNIT III TORSION

۵

Theory of Torsion – Stresses and Deformations in Solid and Hollow Circular Shafts – Combined bending moment and torsion of shafts - Power transmitted to shaft – Shaft in series and parallel – Closed and Open Coiled helical springs – springs in series and parallel.

UNIT IV DEFLECTION OF BEAMS

Ç

Elastic curve – Governing differential equation - Double integration method - Macaulay's method - Area moment method - Conjugate beam method for computation of slope and deflection of determinant beams.

UNIT V THIN CYLINDERS, SPHERES AND THICK CYLINDERS

9

Stresses in thin cylindrical shell due to internal pressure - circumferential and longitudinal stresses - Deformation in thin cylinders - Spherical shells subjected to internal pressure - Deformation in spherical shells - Thick cylinders - Lame's theory.

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- 1. Understand the concepts of stress and strain in simple and compound bars, the importance of principal stresses and principal planes.
- 2. Understand the load transferring mechanism in beams and stress distribution due to shearing force and bending moment.
- 3. Apply basic equation of torsion in designing of shafts and helical springs
- 4. Calculate slope and deflection in beams using different methods.
- 5. Analyze thin and thick shells for applied pressures.

TEXT BOOK

- 1. Rajput R.K. "Strength of Materials (Mechanics of Solids)", S.Chand & company Ltd., New Delhi, 7th edition, 2018.
- 2. Rattan S.S., "Strength of Materials", Tata McGraw Hill Education Pvt .Ltd., New Delhi, 2017.

REFERENCES:

- 1. Singh. D.K., "Strength of Materials", Ane Books Pvt Ltd., New Delhi, 2021.
- 2. Egor P Popov, "Engineering Mechanics of Solids", 2nd edition, PHI Learning Pvt. Ltd., New Delhi, 2015.
- 3. Beer. F.P. & Johnston. E.R. "Mechanics of Materials", Tata McGraw Hill, 8th Edition, New Delhi 2019.
- 4. Vazirani. V.N, Ratwani. M.M, Duggal .S.K "Analysis of Structures: Analysis, Design and Detailing of Structures-Vol.1", Khanna Publishers, New Delhi 2014.

	РО												PSO		
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
2	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
3	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
4	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
5	3	3	3	3	2	3	1	3	2	3	1	3	3	2	3
Low	(1);	Med	ium (2	2);	High	(3)									

GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY

2 0 0 2

UNIT - I : ENVIRONMENT AND BIODIVERSITY

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

UNIT - II: ENVIRONMENTAL POLLUTION

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

UNIT - III: RENEWABLE SOURCES OF ENERGY.

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT - IV: SUSTAINABILITY AND MANAGEMENT

Development, GDP, Sustainability-concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global,

Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT - V: SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cyclescarbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization-socioeconomical and technological change.

TOTAL: 30 PERIODS

TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 7th Edition, New Age International Publishers ,2022.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.

REFERENCES:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 3rd edition, 2015.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 3rd edition.2021.

CE3481 STRENGTH OF MATERIALS AND FLUID MACHINERY LABORATORY L T P C

COURSE OBJECTIVE:

- 1. To study the mechanical properties of metals, wood and spring by testing in laboratory.
- 2. To verify the principles studied in fluid mechanics and machinery theory by performing experiments in laboratory.

UNIT - I STRENGTH OF MATERIALS LIST OF EXPERIMENTS

- Tension test on mild steel rod
- Torsion test on mild steel rod
- 3. Hardness test on metal (Rockwell and Brinell Hardness)
- 4. Compression test on helical spring
- 5. Deflection test on carriage spring

UNIT – II FLUID MECHANICS AND MACHINES LABORATORY LIST OF EXPERIMENTS

- (b) Determination of friction factor for flow through pipes
- 2. (a) Determination of metacentric height
 - (b) Determination of forces due to impact of jet on a fixed plate

(a) Determination of coefficient of discharge of a venturimeter

- 3. Characteristics of centrifugal pumps
- Characteristics of reciprocating pump 4.
- Characteristics of Pelton wheel turbine 5.

TOTAL: 60 PERIODS

30

OUTCOMES: On completion of the course, the student is expected to be able to

- 1. Determine the tensile, torsion and hardness properties of metals by testing
- Determine the stiffness properties of helical and carriage spring 2.
- Apply the conservation laws to determine the coefficient of discharge of 3. venturimeter and finding the friction factor of given pipe
- Apply the fluid static and momentum principles to determine the metacentric height 4. and forces due to impact of jet
- Determine the performance characteristics of turbine, rotodynamic pump and

5. positive displacement pump.

СО	PO												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	3	3	1	1	1	3	1	1	2	2	2	1
2	3	2	1	3	3	1	1	1	3	1	1	2	3	2	1
3	3	3	2	3	2	1	1	1	3	1	1	2	3	2	1
Low	(1);	Medium (2); High (3)				(3)		7							

THERMAL ENGINEERING LABORATORY C ME3461 2

COURSE OBJECTIVES

- To study the valve and port timing diagram and performance characteristics of IC engines
- To study the Performance of refrigeration cycle / components
- 3 To study the Performance and Energy Balance Test on a Steam Generator.

PART I: IC ENGINES LABORATORY

List of Experiments

- 1. Valve Timing and Port Timing diagrams.
- 2. Actual p-v diagrams of IC engines.
- 3. Performance Test on four stroke Diesel Engine.
- 4. Heat Balance Test on 4 stroke Diesel Engine.
- 5. Morse Test on Multi-Cylinder Petrol Engine.

- 6. Retardation Test on a Diesel Engine.
- 7. Determination of p-θ diagram and heat release characteristics of an IC engine.
- 8. Determination of Flash Point and Fire Point of various fuels / lubricants
- 9. Performance test on a two stage Reciprocating Air compressor

PART II STEAM LABORATORY

List of Experiments:

- 1. Study of Steam Generators and Turbines.
- 2. Performance and Energy Balance Test on a Steam Generator.
- 3. Performance and Energy Balance Test on Steam Turbine.

LIST OF EQUIPMENTS FOR A BATCH OF 30 STUDENTS

SI. No.	Name of the Equipment	Qty.
1	I.C Engine – 2 stroke and 4 stroke model	1 set
2	Apparatus for Flash and Fire point	1 No.
3	4-stroke Diesel Engine with mechanical loading	1 No.
4	4-stroke Diesel Engine with hydraulic loading	1 No.
5	4-stroke Diesel Engine with electrical loading	1 No.
6	Multi-Cylinder Petrol Engine	1 No.
7	Single Cylinder Petrol Engine	1 No.
8	Data Acquisition system with any one of the above engines	1 No.
9	Steam Boiler with turbine setup	1 No.

TOTAL:60 PERIOD

OUTCOMES:

At the end of the course the students would be able to

- 1. Conduct tests to evaluate performance characteristics of IC engines
- 2. Conduct tests to evaluate the performance of refrigeration cycle
- 3. Conduct tests to evaluate Performance and Energy Balance on a Steam Generator.

СО	PO	PO											PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	1					1			1	1	1	1
2	2	2	1	1					1			1	1	1	1
3	2	2	1	1					1			1	1	1	1
Low (1); Medium (2); High (3)															

