

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED TO ANNA UNIVERSITY REGULATIONS 2021

B.TECH. PHARMACEUTICAL TECHNOLOGY

CHOICE BASED CREDIT SYSTEM (CBCS)

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

- ❖ To prepare students for prosperous spectrum of career avenues in academia, advanced research, industries of pharmaceutical technology, biomedicine, biotechnology, law, business and government and other pharmaceutical pursuits through dissemination of knowledge and proficiency in engineering and technology fundamentals related to pharmaceutical technology and the ability to solve problems.
- ❖ To transfuse in students the sense of confidence in professional endeavors by application of the derived knowledge and appreciation of economical impact in a societal context.
- ❖ To provide collegial and nurturing environment for the students to realize the professional, ethical obligations and their concern to protect the health and welfare of the public, and to be accountable for the social and environmental impact of their practice.
- ❖ To create an enjoyable educational environment in which students participate in multidisciplinary, team oriented, open-ended curricular and co-curricular activities that prepare them to work either individually and as an integrated team member.
- ❖ To facilitate the students to gain the wisdom of fundamentals and advances to practice pharmaceutical technology and interdisciplinary research as career of constructive service to society and higher learning.

PROGRAM OUTCOMES (POs)

After completion of graduation in Pharmaceutical Technology, the students will be able to demonstrate the ability to:

a. Apply knowledge of mathematics, science and technology in the discipline.

- b. Identify, formulate, research literature, and analyse complex engineering problems for its solution.
- c. Design and develop system processes that meet the specified needs with appropriate consideration for public health, safety, cultural, societal, and environmental.
- d. Design the experiments, its analysis and interpretation of data, synthesis of the information using research-based knowledge for complex problems.
- e. Use modern engineering tools, software and equipment to meet the needs in the area of Pharmaceutical Technology.
- f. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal, and cultural issues relevant to the professional engineering practices.
- g. Apply knowledge of the impact of pharmaceutical technology solutions in a societal and global context.
- h. Demonstrate ethical principles and commitment to responsibilities and norms of the Pharmaceutical technology practices.
- i. Work effectively as an individual and as well as member in teams of diversified professionals.
- j. Communicate effectively.
- k. Understand the philosophies of project management principles in Pharmaceutical technology.
- I. Showcase urge for self-education and life-long learning.

PROGRAMME SPECIFIC OBJECTIVES

After successful completion of the program the graduate will be able to

- 1. Develop active pharmaceutical ingredients, drug intermediates and pharmaceutical products.
- 2. Apply data driven decisions and predictive analytical tools in smaller and larger molecule producing industries.
- 3. Identify technical issues related to the design, manufacturing of chemicals & pharmaceuticals and provide effective interdisciplinary solutions.
- Adapt continuously changing technologies and play pivotal professional role in sustainable societal development.

MAPPING OF COURSE OUTCOMES AND PROGRAMME OUTCOMES

		COURSE NAME	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO8	PO9	PO1 0	PO 11	PO 12	PS O1	PS O2	PS O3	PS O4
		Professional	1.	2.2	1.	2.2	1.	3	3	3	1.6	3	3	3	-	-	-	04
		English - I	6		8		5											
		Matrices and Calculus	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-	
		Engineering Physics	3	3	1.6	1.2	1.8	1	-	-	-	-	-	1	-	-	-	
		Engineering Chemistry	2. 8	1.3	1. 6	1	-	1.5	1.8	1		-	-	1.5	-	-	-	
	TER 1	Problem Solving and Python Programming	2	3	3	3	2	ſ	-	-	7	-	2	2	3	3		
	SEMESTER 1	தமிழர் மரபு /Heritage of Tamils			3		Ī	N		VE	R	<u> </u>						
		Problem Solving and Python Programming Laboratory	2	3	3	3	2	-	-				2	2	3	3		
		Physics and	3	2.4	2.6	1	1											
		Chemistry Laboratory	2. 6	1.3	1. 6	1	1	1.4	1.8	-	-	-	-	1.3	-	-	-	
4R 1		English Laboratory	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-	
YEAR		Professional English – II	3	3	3	3	2.7	3	3	3	2.2	3	3	3	-	-	-	
		Statistics and Numerical Methods	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-	
		Physics of Materials	3	2.2	2	1.6	2	1.6	1.7 5	1			A	1				
	SEMSTER 2	Basic Electrical, Electronics and Instrumentatio n Engineering	2	R ¹ O	G ¹ R	ES!	TH	IR ()U(i H K	NO	WL	D C	E	-	-	-	
	SEI	Engineering Graphics	3	1	2		2					3		2	2	2		
		தமிழரும் தொழில்நுட் பமும் / Tamils and Technology																
		Engineering Practices Laboratory	3	2			1	1	1					2	2	1	1	
		Basic Electrical, Electronics	1.6	1.4	0.8	1.6				1.2	1.6							

		and							1	l	1	1				1		
		and Instrumentatio																
		n																
		Engineering																
		Laboratory																
		Communicatio	2.4	2.8	3	3	1.	3	3	3	3	3	3	3	-	-	-	
		n Laboratory /					8											
		Foreign																
		Language																
		Transform																
		and Partial	3	3	1	1	0	0	0	0	2	0	0	3	_	_	_	
		Differential			-	-					_							
		Equations Chemical	3	3	2.2		3		2.5		2			2			2	2
		Process	3	3	2.2 5		3		2.5	5.31	2			2			3	2
		Calculations			3	500												
		Microbiology	3	3	3	3	3	2	3	2	2	2	2	2	3	2	3	2
	-	wholoblology								_	-		_	_		_		_
	R 3	Pharmaceutica									- 4				2.2		2	1.6
	TE	I Chemistry	3	1.8	3	3	- 1	2	1.3	2	2	2	-	2	2.3	-	3	1.6
	SEMESTER	Biochemistry	2	3	3	2	2	3	1	3	2	1	3	3	3	3	2	3
	Z	Diochemistry		3	3	2	2	3	1	j	2	7.0	3	3	3	3	2	3
	SE	Human			40										2.3	3	2.5	2.5
		Anatomy and	3	3	- 3	3	2.2	_	2.4	1	2	1	4	3	2.0		2.0	2.0
		Physiology			1						_	3. 7						
		Microbiology	3	3	3	3	2	3	1.7		2	2		2	1.6	3	2.5	2
		Laboratory	3	3	3	3	2	3	1.7	-	2	2	-	2				
		Biochemistry													2.3	3	2.5	2.5
		and	3	2	3	3	2.5	-	2.5	2	-	2		3				
		Physiology							0	_		_						
R 2		Laboratory	3	3	3	2.6	2.3	1.5		0.66	1.33	1.5		2	3	3	2.6	2.6
YEAR		Applied Chemical	3	3	3	6	2.3	1.5		0.66	1.33	1.5			3	3	6	2.6 6
>		Engineering			1													
		Thermodynami										7 /						
		cs				. ·												
		Fluid	3	3	2.5	2.7	2.3		1.5		1	2		1.5	3	3	2.5	2
		Mechanics	١.			5	3											
		Cell and	3	2.3	2.5	2	2	-	1.6	1	-	- 4	-	1.5	1.6	-	1.5	2
		Molecular																
	۶ 4	Biology	_	4	<i>~</i> n		4								_		0.0	4
	岜	Physical Pharmaceutic	3	1	UK	1	1	1	1	1	NU		1) [1	6	-	2.3	1
	SEMESTER	S																
	ME	Pharmaceutical	3	2.7	2	-	3	2	2	_	_	_	1	2	3	1	2	_
	SE	Analysis		,	_			_	_				'	_			_	
		Environmental	2.8	1.8	1	1	-	2.2	2.4	-	-	-	-	1.8	-	-	-	
		Sciences and																
		Sustainability																
		Pharmaceutica	3	1.5	2.3	2.3		2	1					2	2.8	2.3	2.4	2.3
		I Chemistry																
		Laboratory																
		Physical	3	3		2					1	1		1	3	1	2	
1		Pharmaceutic																
		s Laboratory Pharmaceut			2	2								3	2	2	2	
YEA	SEM	ical Dosage	3	3	<u> </u>		_	2	2	_	-	_	_			_	<u> </u>	
/	S	Forms			3	2			_						3		5	
	_		_		_	_	_		_	_	_	_	_		_		_	

						1						1		-	-		_	
		Unit	3	2.7	2	-	3	2	2	-	-	-	1	2	3	1	2	-
		Operations in																
		Pharmaceutica																
		I Industries								_								
		Pharmacology	2.1	2.5	2.3	2.5	2	3	3	2	3	-	-	2.6	2.5	2.25	2.6	2.5
		Dosage Forms Laboratory	3	2	1	2	2	-	-	-	2	-	-	-	2. 6	3	-	-
		Pharmacology Laboratory	3	2	3	3	2.5	-	2.5	2	-	2	-	3	2.3	3	2.5	2.5
		Heat and Mass Transfer Operations	3	2.7	2.7	1.8	2.3		2					2	-	3	2	1
	ER 6	Instrumental techniques in drug analysis	3		2	2	3		2	301					1.1 7	2.17	1.1 7	2.1 7
	SEMESTER	Heat & Mass Transfer Operations Laboratory	3	2.7	2	1.8	2.3			2	>	7			3	2	1	2
		Instrumental Techniques In Drug Analysis Laboratory	3	3	3	2.8	2.3	2	2	7/	2			2	2.7 5	3	3	2
IR 4	TER 7	Regulatory requirements in Pharmaceutical Industries	2	2.5	3	2.5	2	2.6	٠	2.5	2). 	4		2.4	2	-	-
YEAR	SEMESTER	Biopharmaceut ics and Pharmacokinet ics	2	2	1	2	2	-	1	-	·	-	-	2		1	3	3

¹⁻Low,2-Medium,3-High,"-"-no correlation

PROGRESS THROUGH KNOWLEDGE

ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED COLLEGES REGULATIONS 2021

CHOICE BASED CREDIT SYSTEM B.TECH. PHARMACEUTICAL TECHNOLOGY

CURRICULUM AND SYLLABI FOR FOR I TO VIII SEMESTERS SEMESTER I

S. No	COURS E CODE	COURSE TITLE	CATE- GORY		ERIO R WI		TOTAL CONTACT	CREDITS
NO	L CODE		GONT	L	Т	Р	PERIODS	
1.	IP3151	Induction Programme	-	ı	-	ı	-	0
THEC	DRY							
2.	HS3152	Professional English - I	HSMC	3	0	0	3	3
3.	MA3151	Matrices and Calculus	BSC	3	1	0	4	4
4.	PH3151	Engineering Physics	BSC	3	0	0	3	3
5.	CY3151	Engineering Chemistry	BSC	3	0	0	3	3
6.	GE3151	Problem Solving and Python Programming	ESC	3	0	0	3	3
7.	GE3152	தமிழர் மரபு /Heritage of Tamils	HSMC	1	0	0	1	1
PRAC	CTICALS		λ'			7//	. //	
8.	GE3171	Problem Solving and Python Programming Laboratory	ESC	0	0	4	4	2
9.	BS3171	Physics and Chemistry Laboratory	BSC	0	0	4	4	2
10.	GE3172	English Laboratory \$	EEC	0	0	2	2	1
			TOTAL	16	1	10	27	22

\$ Skill Based Course

SEMESTER II

		OZ.III.	STEIN II					
S. No	COURSE	COURSE TITLE	CATE- GORY		ERIC R W	DDS EEK	TOTAL CONTACT	CREDITS
				L	T	Р	PERIODS	
THE	ORY							
1.	HS3252	Professional English - II	HSMC	2	0	0	2	2
2.	MA3251	Statistics and Numerical Methods	BSC	3	1	0	4	4
3.	PH3258	Physics of Materials	BSC	3	0	0	3	3
4.	BE3252	Basic Electrical, Electronics and Instrumentation Engineering	HSMC	3	0	0	3	3
5.	GE3251	Engineering Graphics	ESC	2	0	4	6	4
6.	GE3252	தமிழரும் தொழில்நுட்பமும் / Tamils and Technology	HSMC	1	0	0	1	1
7.		NCC Credit Course Level 1*	-	2	0	0	2	2
PRA	CTICALS			•			1	
8.	GE3271	Engineering Practices Laboratory	ESC	0	0	4	4	2
9.	BE3272	Basic Electrical, Electronics and Instrumentation Engineering Laboratory	ESC	0	0	4	4	2
10.	GE3272	Communication Laboratory / Foreign Language \$	EEC	0	0	4	4	2
			TOTAL	14	1	16	31	23

[#] NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.
\$ Skill Based Course

SEMESTER III

S.	COURSE	COURSE TITLE	CATE	PEI PER	RIOE WE	_	TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
THEC	RY							
1.	MA3351	Transform and Partial Differential Equations	BSC	3	1	0	4	4
2.	PY3301	Chemical Process Calculations	PCC	2	1	0	3	3
3.	BT3352	Microbiology	PCC	3	0	0	3	3
4.	PY3302	Pharmaceutical Chemistry	PCC	3	0	0	3	3
5.	BT3392	Biochemistry	PCC	3	0	0	3	3
6.	PY3391	Human Anatomy and Physiology	PCC	3	0	0	3	3
PRAC	TICALS				-			
7.	PY3311	Microbiology Laboratory	PCC	0	0	3	3	1.5
8.	PY3312	Biochemistry and Physiology Laboratory	PCC	0	0	3	3	1.5
9.	GE3361	Professional Development ^{\$}	EEC	0	0	2	2	1
			TOTAL	17	2	8	27	23

^{\$} Skill Based Course

SEMESTER IV

S. NO.	COURSE	COURSE TITLE	CATE	PEI PER	RIOI WE		TOTAL CONTACT	CREDITS
140.	CODE		G	L	Т	Р	PERIODS	
THEC	DRY							
1.	PY3401	Applied Chemical Engineering Thermodynamics	PCC	2	1	0	3	3
2.	PY3402	Fluid Mechanics	PCC	3	0	0	3	3
3.	PY3403	Cell and Molecular Biology	PCC	3	0	0	3	3
4.	PY3404	Physical Pharmaceutics	PCC	3	0	0	3	3
5.	PY3405	Pharmaceutical Analysis	PCC	3	0	0	3	3
6.	GE3451	Environmental Sciences and Sustainability	BSC	2	0	0	2	2
7.		NCC Credit Course Level 2#		3	0	0	3	3 #
PRAC	CTICALS	PRUUKESS IMKU	UGHI	MI	m	TE	UUE	
8.	PY3411	Pharmaceutical Chemistry Laboratory	PCC	0	0	3	3	1.5
9.	PY3412	Physical Pharmaceutics Laboratory	PCC	0	0	3	3	1.5
10.	PY3513	Industrial Training/Internship I*	EEC	-	-	-	-	-
			TOTAL	16	1	6	23	20

[#] NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

^{*}Four weeks industrial training/internship carries two credits. Industrial training/internship during IV Semester Summer Vacation will be evaluated in V semester

SEMESTER V

S. NO	COURSE	COURSE TITLE	CATE GORY			ODS VEEK	TOTAL CONTACT	CREDITS
	O D		GOINT	L	Т	Р	PERIODS	
THE	ORY							
1.	PY3501	Pharmaceutical Dosage Forms	PCC	3	0	0	3	3
2.	PY3502	Unit Operations in	PCC	3	1	0	4	4
		Pharmaceutical Industries						
3.	PY3503	Pharmacology	PCC	3	0	0	3	3
4.		Professional Elective I	PEC	3	0	0	3	3
5.		Professional Elective II	PEC	3	0	0	3	3
6.		Professional Elective III	PEC	3	0	0	3	3
7.		Mandatory Course-I ^{&}	MC	3	0	0	3	0
PRA	CTICALS							
8.	PY3511	Dosage Forms Laboratory	PCC	0	0	3	3	1.5
9.	PY3512	Pharmacology Laboratory	PCC	0	0	3	3	1.5
10.	PY3513	Industrial Training/Internship I*	EEC	0	0	0	0	2
			TOTAL	21	1	6	28	24

[&] Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I)

SEMESTER VI

S. NO.	COURSE	COURSE TITLE	CATE GORY		RIO R WI	EEK	TOTAL	CREDITS
THEC	ORY			L	l	P	PERIODS	
1.	PY3601	Heat and Mass Transfer Operations	PCC	3	1	0	4	4
2.	PY3602	Instrumental Techniques in Drug Analysis	PEC	3	0	0	3	3
3.		Open Elective – I*	OEC	3	0	0	3	3
4.		Professional Elective IV	PEC	3	0	0	3	3
5.		Professional Elective V	PEC	3	0	0	3	3
6.		Professional Elective VI	PEC	3	0	0	3	3
7.		Mandatory Course-II&	MC	3	0	0	3	0
8.		NCC Credit Course Level 3#	JUVIII	3	0	0	3	3 #
PRAC	CTICALS							
9.	PY3611	Heat and Mass Transfer Operations Laboratory	PCC	0	0	3	3	1.5
10.	PY3612	Instrumental Techniques In Drug Analysis Laboratory	PCC	0	0	3	3	1.5
11.	PY3711	Industrial Training/Internship	EEC	-	-	-	-	-
			TOTAL	21	1	6	28	22

^{*}Four weeks industrial training/internship carries two credit. Industrial training/Internship during IV Semester Summer Vacation will be evaluated in V semester

^{*}Open Elective – I shall be chosen from the emerging technologies.

##Four weeks industrial training/internship carries two credits. Industrial training/Internship during VI Semester Summer Vacation will be evaluated in VII semester

Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC-II)

^{*} NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

SEMESTER VII/VIII*

S. NO.	COURSE	COURSE TITLE	CATE GORY		RIO R WI		TOTAL CONTACT	CREDITS
NO.	CODL		GOKT	L	Т	Р	PERIODS	
THE	ORY							
1.	PY3701	Regulatory requirements in Pharmaceutical Industries	PCC	3	0	0	3	3
2.	PY3702	Biopharmaceutics and Pharmacokinetics	PCC	3	0	0	3	3
3.	GE3791	Human values and Ethics	HSMC	2	0	0	2	2
4.		Elective - Management #	HSMC	3	0	0	3	3
5.		Open Elective – II**	OEC	3	0	0	3	3
6.		Open Elective – III***	OEC	3	0	0	3	3
7.		Open Elective – IV***	OEC	3	0	0	3	3
PRA	CTICALS							
8.	PY3711	Industrial Training/Internship II**	EEC	E	þ-		-	2
			TOTAL	20	0	0	20	22

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

SEMESTER VIII/VII*

S. NO.	COURSE	COURSE TITLE	CATE GORY	PEI PER	RIOE WE		TOTAL CONTACT	CREDITS
NO.	CODE	3 \ \ \ \ =	GURT	L	T	Р	PERIODS	
PRA	CTICALS		- 1	316	1		.)	
1.	PY3811	Project Work / Internship#	EEC	0	0	20	20	10
			TOTAL	0	0	20	20	10

^{*}If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

TOTAL CREDITS: 166

ELECTIVE - MANAGEMENT COURSES

		ELECTIVE - IVIA	NAGLIVILIN		UINO	LJ		
SL.	COURSE CODE	COURSE TITLE	CATE		RIOE RWE		TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	GE3751	Principles of Management	HSMC	3	0	0	3	3
2.	GE3752	Total Quality Management	HSMC	3	0	0	3	3
3.	GE3753	Engineering Economics and Financial Accounting	HSMC	3	0	0	3	3
4.	GE3754	Human Resource Management	HSMC	3	0	0	3	3
5.	GE3755	Knowledge Management	HSMC	3	0	0	3	3
6.	GE3792	Industrial Management	HSMC	3	0	0	3	3

^{**}Open Elective – II shall be chosen from the emerging technologies.

^{***}Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes

[#] Elective- Management shall be chosen from the Elective Management courses

^{**}Four weeks industrial training/internship carries two credit. Industrial training/Internship during VI Semester Summer Vacation will be evaluated in VII semester

^{#15} weeks of continuous Internship in an organization carries 10 credits.

MANDATORY COURSES I

S. NO.	COURSE			PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.	CODE		GORY	L	Т	Р	PERIODS	
1.	MX3081	Introduction to Women and	MC	3	0	0	3	0
		Gender Studies						
2.	MX3082	Elements of Literature	MC	3	0	0	3	0
3.	MX3083	Film Appreciation	MC	3	0	0	3	0
4.	MX3084	Disaster Risk Reduction	MC	3	0	0	3	0
		and Management						

MANDATORY COURSES II

S. NO.	COURSE	COURSE TITLE	CATE		PERIODS PER WEEK		TOTAL CONTACT	CREDITS
140.	000		GOKT	L	T	Р	PERIODS	
1.	MX3085	Well Being with Traditional Practices -Yoga, Ayurveda and Siddha	MC	3	0	0	3	0
2.	MX3086	History of Science and Technology in India	MC	3	0	0	3	0
3.	MX3087	Political and Economic Thought for a Humane Society	MC	3	0	0	3	0
4.	MX3088	State, Nation Building and Politics in India	MC	3	0	0	3	0
5.	MX3089	Industrial Safety	MC	3	0	0	3	0

PROFESSIONAL ELECTIVE COURSES: VERTICALS

Vertical I	Vertical II	Vertical III	Vertical IV
Drug Design & Development	Formulation and Manufacturing Technology	Quality Control and Quality Assurance	Pharmaceutical Industrial Management
Medicinal Chemistry	Technology of Fine Chemicals and Bulk drugs	Biological spectroscopic techniques	Pharmaceutical Production Management
Bioinformatics and Cheminformatics	Pre formulation Technology	Quality Assurance in Pharmaceutical Industries	Pharmaceutical Supply Chain Management
Protein Structure, Function and Proteomics	Manufacturing Technology of Dosage Forms	Audits and regulatory compliance	Safety and Disaster Management
Computer Aided Drug Design	Industrial Process and Scale up Techniques	Validation in Pharmaceutical Industries	Management Information System
Regulatory Toxicology	Novel Drug Delivery Systems	Quality Management system	Industrial Psychology And Human Resource Management
Clinical Research and Pharmacovigilance	Pharmaceutical Packaging Technology	Product development and technology transfer	Project Management for Pharmaceutical Technology

Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation. Students are permitted to choose all Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to Regulations 2021 Clause 4.10. (Amendments)

PROFESSIONAL ELECTIVE COURSES: VERTICALS

VERTICAL I: DRUG DESIGN & DEVELOPMENT

SL.	COURSE CODE	COURSE TITLE CATE		PERIODS PER WEEK			TOTAL CONTACT	CREDITS
NO.			GURT	L	Т	Р	PERIODS	
1.	PY3001	Medicinal Chemistry	PEC	3	0	0	3	3
2.	PY3002	Bioinformatics and Cheminformatics	PEC	3	0	0	3	3
3.	PY3003	Protein Structure, Function and Proteomics	PEC	3	0	0	3	3
4.	CPY331	Computer Aided Drug Design	PEC	3	0	0	3	3
5.	PY3004	Regulatory Toxicology	PEC	3	0	0	3	3
6.	PY3005	Clinical Research and Pharmacovigilance	PEC	3	0	0	3	3

VERTICAL II: FORMULATION AND MANUFACTURING TECHNOLOGY

SL. NO.	COURSE CODE	COURSE TITLE	CATE		ERIC ER W	EEK	TOTAL CONTACT	CREDITS
			33 .(1)	L	Т	Р	PERIODS	
1.	PY3006	Technology of Fine Chemicals and Bulk drugs	PEC	3	0	0	3	3
2.	PY3007	Pre formulation Technology	PEC	3	0	0	3	3
3.	PY3008	Manufacturing Technology of Dosage Forms	PEC	3	0	0	ε	З
4.	PY3009	Industrial Process and Scale up Techniques	PEC	3	0	0	3	3
5.	PY3010	Novel Drug Delivery Systems	PEC	3	0	0	3	3
6.	PY3011	Pharmaceutical Packaging Technology	PEC	3	0	0	3	3

VERTICAL III: QUALITY CONTROL AND QUALITY ASSURANCE

SL.	COURSE CODE	E COURSE TITLE	CATE		ERIC R W	_	TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	PY3012	Biological spectroscopic techniques	PEC	3	0	0	3	3
2.	PY3013	Quality Assurance in Pharmaceutical Industries	PEC	3	0	0	3	3
3.	PY3014	Audits and regulatory compliance	PEC	3	0	0	3	3
4.	PY3015	Validation in Pharmaceutical Industries	PEC	3	0	0	3	3
5.	PY3016	Quality Management systems	PEC	3	0	0	3	3
6.	PY3017	Product Development and Technology Transfer	PEC	3	0	0	3	3

VERTICAL IV: PHARMACEUTICAL INDUSTRIAL MANAGEMENT

SL. NO.	COURSE COURSE TITLE CATE GORY		_	ERIC R W		TOTAL CONTACT	CREDITS	
NO.		1 1 =	GORT	L	Т	Р	PERIODS	
1.	PY3018	Pharmaceutical Production Management	PEC	3	0	0	3	3
2.	PY3019	Pharmaceutical Supply Chain Management	PEC	3	0	0	3	3
3.	PY3020	Safety and Disaster Management	PEC	3	0	0	3	3
4.	PY3021	Management Information System	PEC	3	0	0	3	3
5.	PY3022	Industrial Psychology And Human Resource Management	PEC	3	0	0	3	3
6.	PY3023	Project Management for Pharmaceutical Technology	PEC	3	0	0	3	3

OPEN ELECTIVES

Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories.

OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

SL. NO.	COURSE CODE	COURSE TITLE	CATE		RIOD WEE	_	TOTAL CONTACT	CREDITS
NO.			GUKT	L	Т	Р	PERIODS	
1.	OCS351	Artificial Intelligence and Machine Learning Fundamentals	OEC	2	0	2	4	3
2.	OCS352	IoT Concepts and Applications	OEC	2	0	2	4	3
3.	OCS353	Data Science Fundamentals	OEC	2	0	2	4	3
4.	CCS333	Augmented Reality / Virtual Reality	OEC	2	0	2	4	3

OPEN ELECTIVES - III

SL. NO.	COURSE	COURSE TITLE	CATE GORY		RIO R WE		TOTAL CONTACT	CREDITS
NO.		201	GURT	L	Т	Р	PERIODS	
1.	OHS351	English for Competitive Examinations	OEC	3	0	0	3	3
2.	OCE353	Lean Concepts, Tools And Practices	OEC	3	0	0	3	3
3.	OMG352	NGOs and Sustainable Development	OEC	3	0	0	3	3
4.	OMG353	Democracy and Good Governance	OEC	3	0	0	3	3
5.	CME365	Renewable Energy Technologies	OEC	3	0	0	3	3
6.	OME354	Applied Design Thinking	OEC	3	0	0	3	3
7.	MF3003	Reverse Engineering	OEC	3	0	0	3	3
8.	OPR351	Sustainable Manufacturing	OEC	3	0	0	3	3
9.	AU3791	Electric and Hybrid Vehicle	OEC	3	0	0	3	3
10.	OAS352	Space Engineering	OEC	3	0	0	3	3
11.	OIM351	Industrial Management	OEC	3	0	0	3	3
12.	OIE354	Quality Engineering	OEC	3	0	0	3	3
13.	OSF351	Fire Safety Engineering	OEC	3	0	0	3	3
14.	OML351	Introduction to non- destructive testing	OEC	3	0	0	3	3
15.	OMR351	Mechatronics	OEC	3	0	0	3	3
16.	ORA351	Foundation of Robotics	OEC	3	0	0	3	3

17.	OAE352	Fundamentals of Aeronautical engineering	OEC	3	0	0	3	3
18.	OGI351	Remote Sensing Concepts	OEC	3	0	0	3	3
19.	OAI351	Urban Agriculture	OEC	3	0	0	3	3
20.	OEN351	Drinking Water Supply and Treatment	OEC	3	0	0	3	3
21.	OEE352	Electric Vehicle technology	OEC	3	0	0	3	3
22.	OEI353	Introduction to PLC Programming	OEC	3	0	0	3	3
23.	OFD352	Traditional Indian Foods	OEC	3	0	0	3	3
24.	OFD353	Introduction to food processing	OEC	3	0	0	3	3
25.	OCH351	Nano Technology	OEC	3	0	0	3	3
26.	OCH352	Functional Materials	OEC	3	0	0	3	3
27.	OTT351	Basics of Textile Finishing	OEC	3	0	0	3	3
28.	OTT352	Industrial Engineering for Garment Industry	OEC	3	0	0	3	3
29.	OTT353	Basics of Textile Manufacture	OEC	3	0	0	3	3
30.	OPE351	Introduction to Petroleum Refining and Petrochemicals	OEC	3	0	0	3	3
31.	CPE334	Energy Conservation and Management	OEC	3	0	0	3	3
32.	OPT351	Basics of Plastics Processing	OEC	3	0	0	3	3
33.	OEC351	Signals and Systems	OEC	3	0	0	3	3
34.	OEC352	Fundamentals of Electronic Devices and Circuits	OEC	3	0	0	3	3
35.	CBM348	Foundation Skills in Integrated Product Development	OEC	3	0	0	EDGE	3
36.	CBM333	Assistive Technology	OEC	3	0	0	3	3
37.	OMA352	Operations Research	OEC	3	0	0	3	3
38.	OMA353	Algebra and Number Theory	OEC	3	0	0	3	3
39.	OMA354	Linear Algebra	OEC	3	0	0	3	3
40.	OBT352	Basics of Microbial Technology	OEC	3	0	0	3	3
41.	OBT353	Basics of Biomolecules	OEC	3	0	0	3	3
42.	OBT354	Fundamentals of Cell and Molecular Biology	OEC	3	0	0	3	3

OPEN ELECTIVES - IV

SL.	COURSE	COURSE TITLE	CATE		RIOI R WE		TOTAL CONTACT	CREDITS
NO.			GORY	L	T	Р	PERIODS	
1.	OHS352	Project Report Writing	OEC	3	0	0	3	3
2.	OCE354	Basics of Integrated Water Resources Management	OEC	3	0	0	3	3
3.	OMA355	Advanced Numerical Methods	OEC	3	0	0	3	3
4.	OMA356	Random Processes	OEC	3	0	0	3	3
5.	OMA357	Queuing and Reliability Modelling	OEC	3	0	0	3	3
6.	OMG354	Production and Operations Management for Entrepreneurs	OEC	3	0	0	3	3
7.	OMG355	Multivariate Data Analysis	OEC	3	0	0	3	3
8.	OME352	Additive Manufacturing	OEC	3	0	0	3	3
9.	CME343	New Product Development	OEC	3	0	0	3	3
10.	OME355	Industrial Design & Rapid Prototyping Techniques	OEC	2	0	2	4	α
11.	MF3010	Micro and Precision Engineering	OEC	3	0	0	3	3
12.	OMF354	Cost Management of Engineering Projects	OEC	3	0	0	3	3
13.	AU3002`	Batteries and Management system	OEC	3	0	0	3	3
14.	AU3008	Sensors and Actuators	OEC	3	0	0	3	3
15.	OAS353	Space Vehicles	OEC	3	0	0	3	3
16.	OIM352	Management Science	OEC	3	0	0	3	3
17.	OIM353	Production Planning and Control	OEC	3	0	0	3	3
18.	OIE353	Operations Management	OEC	3	0	0	3	3
19.	OSF352	Industrial Hygiene	OEC	3	0	0	3	3
20.	OSF353	Chemical Process Safety	OEC	3	0	0	3	3
21.	OML352	Electrical, Electronic and Magnetic materials	OEC	3	0	0	3	3
22.	OML353	Nanomaterials and applications	OEC	3	0	0	3	3
23.	OMR352	Hydraulics and Pneumatics	OEC	3	0	0	3	3
24.	OMR353	Sensors	OEC	3	0	0	3	3
25.	ORA352	Concepts in Mobile Robots	OEC	3	0	0	3	3

26.	MV3501	Marine Propulsion	OEC	3	0	0	3	3
27.	OMV351	Marine Merchant Vessels	OEC	3	0	0	3	3
28.	OMV352	Elements of Marine Engineering	OEC	3	0	0	3	3
29.	CRA332	Drone Technologies	OEC	3	0	0	3	3
30.	OGI352	Geographical Information System	OEC	3	0	0	3	3
31.	OAI352	Agriculture Entrepreneurship Development	OEC	3	0	0	3	3
32.	OEN352	Biodiversity Conservation	OEC	3	0	0	3	3
33.	OEE353	Introduction to control systems	OEC	3	0	0	3	3
34.	OEI354	Introduction to Industrial Automation Systems	OEC	3	0	0	3	3
35.	OFD354	Fundamentals of Food Engineering	OEC	3	0	0	3	3
36.	OFD355	Food safety and Quality Regulations	OEC	3	0	0	3	3
37.	OCH353	Energy Technology	OEC	3	0	0	3	3
38.	OCH354	Surface Science	OEC	3	0	0	3	3
39.	OTT354	Basics of Dyeing and Printing	OEC	3	0	0	3	3
40.	FT3201	Fibre Science	OEC	3	0	0	3	3
41.	OTT355	Garment Manufacturing Technology	OEC	3	0	0	3	3
42.	OPE353	Industrial safety	OEC	3	0	0	3	3
43.	OPE354	Unit Operations in Petro Chemical Industries	OEC	3	0	0	3	3
44.	OPT352	Plastic Materials for Engineers	OEC	3	0	0	3	3
45.	OPT353	Properties and Testing of Plastics	OEC	3	0	0	3	3
46.	OEC353	VLSI Design	OEC	3	0	0	3	3
47.	CBM370	Wearable devices	OEC	3	0	0	3	3
48.	CBM356	Medical Informatics	OEC	3	0	0	3	3
49.	OBT355	Biotechnology for Waste Management	OEC	3	0	0	3	3
50.	OBT356	Lifestyle Diseases	OEC	3	0	0	3	3
51.	OBT357	Biotechnology in Health Care	OEC	3	0	0	3	3

SUMMARY

	Name of the Programme													
S.No	Subject Area			C	redits pe	r Semeste	er			Total Credits				
		ı	II	III	IV	V	VI	VII/VIII	VIII/VII	Orouno				
1	HSMC	4	6					5		15				
2	BSC	12	7	4	2					25				
3	ESC	5	8											
4	PCC		18 18 13 7 6											
5	PEC		9 12											
6	OEC					-//	3	9		12				
7	EEC	1	2	1		2		2	10	18				
8	Non-Credit /(Mandatory)													
	Total	22	23	23	20	24	22	22	10	166				

PROGRESS THROUGH KNOWLEDGE

Enrollment for B.E. / B. Tech. (Honours) / Minor degree (Optional)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E./B.Tech. (Honours) Minor degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also. Complete details are available in clause 4.10 (Amendments) of Regulations 2021.

VERTICALS FOR MINOR DEGREE (IN ADDITIONS TO ALL THE VERTICALS OF OTHER PROGRAMMES)

Vertical I Fintech and Block Chain	Vertical II Entrepreneurship	Vertical III Public Administration	Vertical IV Business Data Analytics	Vertical V Environment and Sustainability
Financial Management	Foundations of Entrepreneruship	Principles of Public Administration	Statistics For Management	Sustainable infrastructure Development
Fundamentals of Investment	Team Building & Leadership Management for Business	Constitution of India	Datamining For Business Intelligence	Sustainable Agriculture and Environmental Management
Banking, Financial Services and Insurance	Creativity & Innovation in Entrepreneurship	Public Personnel Administration	Human Resource Analytics	Sustainable Bio Materials
Introduction to Blockchain and its Applications	Principles of Marketing Management For Business	Administrative Theories	Marketing And Social Media Web Analytics	Materials for Energy Sustainability
Fintech Personal Finance and Payments	Human Resource Management for Entrepreneurs	Indian Administrative System	Operation And Supply Chain Analytics	Green Technology
Introduction to Fintech	Financing New Business Ventures	Public Policy Administration	Financial Analytics	Environmental Quality Monitoring and Analysis
-	-	-	-	Integrated Energy Planning for Sustainable Development
-	-	-	-	Energy Efficiency for Sustainable Development

(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

VERTICAL 1: FINTECH AND BLOCK CHAIN

SL. NO	COURSE CODE	COURSE TITLE	CATE GORY		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
			GURT	L	Т	Р	PERIODS	
1.	CMG331	Financial Management	PEC	3	0	0	3	3
2.	CMG332	Fundamentals of Investment	PEC	3	0	0	3	3
3.	CMG333	Banking, Financial Services and Insurance	PEC	3	0	0	3	3
4.	CMG334	Introduction to Blockchain and its Applications	PEC	3	0	0	3	3
5.	CMG335	Fintech Personal Finance and Payments	PEC	3	0	0	3	3
6.	CMG336	Introduction to Fintech	PEC	3	0	0	3	3

VERTICAL 2: ENTREPRENEURSHIP

SL.	COURSE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GORY		Т	Р	PERIODS	
1.	CMG337	Foundations of Entrepreneruship	PEC	3	0	0	3	3
2.	CMG338	Team Building & Leadership Management for Business	PEC	3	0	0	3	3
3.	CMG339	Creativity & Innovation in Entrepreneurship	PEC	3	0	0	3	3
4.	CMG340	Principles of Marketing Management For Business	PEC	3	0	0	3	3
5.	CMG341	Human Resource Management for Entrepreneurs	PEC	3	0	0	3	3
6.	CMG342	Financing New Business Ventures	PEC	3	0	0	3	3
		ROGRESSIHR	OUG	1 1		ΟW	LEDGE	

VERTICAL 3: PUBLIC ADMINISTRATION

SL.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	CMG343	Principles of Public Administration	PEC	3	0	0	3	3
2.	CMG344	Constitution of India	PEC	3	0	0	3	3
3.	CMG345	Public Personnel Administration	PEC	3	0	0	3	3
4.	CMG346	Administrative Theories	PEC	3	0	0	3	3
5.	CMG347	Indian Administrative System	PEC	3	0	0	3	3
6.	CMG348	Public Policy Administration	PEC	3	0	0	3	3

VERTICAL 4: BUSINESS DATA ANALYTICS

SL. NO.	COURSE	COURSE TITLE	CATE GORY		PEI VEE	?	TOTAL CONTACT PERIODS	CREDITS
				L	T	Р	PERIODS	
1.	CMG349	Statistics For Management	PEC	3	0	0	3	3
2.	CMG350	Datamining For Business Intelligence	PEC	3	0	0	3	3
3.	CMG351	Human Resource Analytics	PEC	3	0	0	3	3
4.	CMG352	Marketing And Social Media Web Analytics	PEC	3	0	0	3	3
5.	CMG353	Operation And Supply Chain Analytics	PEC	3	0	0	3	3
6.	CMG354	Financial Analytics	PEC	3	0	0	3	3

PROGRESS THROUGH KNOWLEDGE

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

SL.	COURSE CODE	COURSE TITLE	CATE		ERIC R W	DS EEK	TOTAL CONTACT	CREDITS
NO.			GORY	L	Т	Р	PERIODS	
1.	CES331	Sustainable infrastructure Development	PEC	3	0	0	3	3
2.	CES332	Sustainable Agriculture and Environmental Management	PEC	3	0	0	3	3
3.	CES333	Sustainable Bio Materials	PEC	3	0	0	3	3
4.	CES334	Materials for Energy Sustainability	PEC	3	0	0	3	3
5.	CES335	Green Technology	PEC	3	0	0	3	3
6.	CES336	Environmental Quality Monitoring and Analysis	PEC	3	0	0	3	3
7.	CES337	Integrated Energy Planning for Sustainable Development	PEC	3	0	0	3	3
8.	CES338	Energy Efficiency for Sustainable Development	PEC	3	0	0	3	3

IP3151

INDUCTION PROGRAMME

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character. "

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing.

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) Proficiency Modules

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering / Technology / Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

REFERENCES:

Guide to Induction program from AICTE

HS3152

PROFESSIONAL ENGLISH I

LTPC 3003

OBJECTIVES:

- To improve the communicative competence of learners
- To learn to use basic grammatic structures in suitable contexts
- To acquire lexical competence and use them appropriately in a sentence and understand their meaning in a text
- To help learners use language effectively in professional contexts
- To develop learners' ability to read and write complex texts, summaries, articles, blogs, definitions, essays and user manuals.

UNIT I INTRODUCTION TO EFFECTIVE COMMUNICATION

1

What is effective communication? (Explain using activities) Why is communication critical for excellence during study, research and work? What are the seven C's of effective communication? What are key language skills? What is effective listening? What does it involve? What is effective speaking? What does it mean to be an excellent reader? What should you be able to do? What is effective writing? How does one develop language and communication skills? What does the course focus on? How are communication and language skills going to be enhanced during this course? What do you as a learner need to do to enhance your English language and communication skills to get the best out of this course?

INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

Ø

Reading - Reading brochures (technical context), telephone messages / social media messages relevant to technical contexts and emails. Writing - Writing emails / letters introducing oneself. Grammar - Present Tense (simple and progressive); Question types: Wh/ Yes or No/ and Tags. Vocabulary - Synonyms; One word substitution; Abbreviations & Acronyms (as used in technical contexts).

UNIT II NARRATION AND SUMMATION

9

Reading - Reading biographies, travelogues, newspaper reports, Excerpts from literature, and travel & technical blogs. Writing - Guided writing-- Paragraph writing Short Report on an event (field trip etc.) Grammar —Past tense (simple); Subject-Verb Agreement; and Prepositions. Vocabulary - Word forms (prefixes suffixes); Synonyms and Antonyms. Phrasal verbs.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

q

Reading – Reading advertisements, gadget reviews; user manuals. Writing - Writing definitions; instructions; and Product /Process description. Grammar - Imperatives; Adjectives; Degrees of comparison; Present & Past Perfect Tenses. Vocabulary - Compound Nouns, Homonyms; and Homophones, discourse markers (connectives & sequence words).

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

۵

Reading – Newspaper articles; Journal reports –and Non Verbal Communcation (tables, pie charts etc,.). Writing – Note-making / Note-taking (*Study skills to be taught, not tested); Writing recommendations; Transferring information from non verbal (chart, graph etc, to verbal mode) Grammar – Articles; Pronouns - Possessive & Relative pronouns. Vocabulary - Collocations; Fixed / Semi fixed expressions.

UNIT V EXPRESSION

9

TOTAL: 45 PERIODS

Reading – Reading editorials; and Opinion Blogs; Writing – Essay Writing (Descriptive or narrative). Grammar – Future Tenses, Punctuation; Negation (Statements & Questions); and Simple, Compound & Complex Sentences. Vocabulary - Cause & Effect Expressions – Content vs Function words.

LEARNING OUTCOMES:

At the end of the course, learners will be able

- To use appropriate words in a professional context
- To gain understanding of basic grammatical structures and use them in right context.
- To read and interpret information presented in tables, charts and other graphic forms
- To write definitions, descriptions, narrations and essays on various topics

TEXT BOOKS:

- 1. English for Engineers & Technologists Orient Blackswan Private Ltd. Department of English, Anna University, (2020 edition)
- 2. English for Science & Technology Cambridge University Press, 2021. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCE BOOKS:

- 1. Technical Communication Principles And Practices By Meenakshi Raman & Sangeeta Sharma, Oxford Univ. Press, 2016, New Delhi.
- 2. A Course Book On Technical English By Lakshminarayanan, Scitech Publications (India) Pvt. Ltd.
- English For Technical Communication (With CD) By Aysha Viswamohan, Mcgraw Hill Education, ISBN: 0070264244.
- 4. Effective Communication Skill, Kulbhusan Kumar, RS Salaria, Khanna Publishing House.
- 5. Learning to Communicate Dr. V. Chellammal, Allied Publishing House, New Delhi, 2003.

ASSESSMENT PATTERN

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

CO-PO & PSO MAPPING

СО			Р	O									PS	60	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	1	1	1	3	3	3	1	3	-	3	-	-	-
2	1	1	1	1	1	3	3	3	1	3	-	3	•	•	-
3	2	3	2	3	2	3	3	3	2	3	3	3	-	-	-
4	2	3	2	3	2	3	3	3	2	3	3	3	-	-	-
5	2	3	3	3	-	3	3	3	2	3	-	3	-	-	-
AVg.	1.6	2.2	1.8	2.2	1.5	3	3	3	1.6	3	3	3	-	-	-

- 1-low, 2-medium, 3-high, '-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

MA3151

MATRICES AND CALCULUS

LTPC 3 1 0 4

COURSE OBJECTIVES:

- To develop the use of matrix algebra techniques that is needed by engineers for practical applications.
- To familiarize the students with differential calculus.
- To familiarize the student with functions of several variables. This is needed in many branches of engineering.
- To make the students understand various techniques of integration.
- To acquaint the student with mathematical tools needed in evaluating multiple integrals and their applications.

UNIT I MATRICES

9+

Eigenvalues and Eigenvectors of a real matrix – Characteristic equation – Properties of Eigenvalues and Eigenvectors – Cayley - Hamilton theorem – Diagonalization of matrices by orthogonal transformation – Reduction of a quadratic form to canonical form by orthogonal transformation – Nature of quadratic forms – Applications: Stretching of an elastic membrane.

UNIT II DIFFERENTIAL CALCULUS

9+3

Representation of functions - Limit of a function - Continuity - Derivatives - Differentiation rules (sum, product, quotient, chain rules) - Implicit differentiation - Logarithmic differentiation - Applications : Maxima and Minima of functions of one variable.

UNIT III FUNCTIONS OF SEVERAL VARIABLES

9+3

Partial differentiation – Homogeneous functions and Euler's theorem – Total derivative – Change of variables – Jacobians – Partial differentiation of implicit functions – Taylor's series for functions of two variables – Applications: Maxima and minima of functions of two variables and Lagrange's method of undetermined multipliers.

UNIT IV INTEGRAL CALCULUS

9+3

Definite and Indefinite integrals - Substitution rule - Techniques of Integration: Integration by parts, Trigonometric integrals, Trigonometric substitutions, Integration of rational functions by partial fraction, Integration of irrational functions - Improper integrals - Applications: Hydrostatic force and pressure, moments and centres of mass.

UNIT V MULTIPLE INTEGRALS

9+3

TOTAL: 60 PERIODS

Double integrals – Change of order of integration – Double integrals in polar coordinates – Area enclosed by plane curves – Triple integrals – Volume of solids – Change of variables in double and triple integrals – Applications : Moments and centres of mass, moment of inertia.

COURSE OUTCOMES:

At the end of the course the students will be able to

CO1: Use the matrix algebra methods for solving practical problems.

- CO2: Apply differential calculus tools in solving various application problems.
- CO3: Able to use differential calculus ideas on several variable functions.
- CO4 :Apply different methods of integration in solving practical problems.
- CO5 :Apply multiple integral ideas in solving areas, volumes and other practical problems.

TEXT BOOKS:

- Krevszia.E. "Advanced Engineering Mathematics". John Wilev and Sons. 10th Edition, New Delhi, 2016.
- 2. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, New Delhi. 44th Edition . 2018.
- James Stewart, " Calculus: Early Transcendentals", Cengage Learning, 8th Edition, New Delhi, 2015. [For Units II & IV - Sections 1.1, 2.2, 2.3, 2.5, 2.7 (Tangents problems only), 2.8, 3.1 to 3.6, 3.11, 4.1, 4.3, 5.1 (Area problems only), 5.2, 5.3, 5.4 (excluding net change theorem), 5.5, 7.1 - 7.4 and 7.8].

REFERENCES:

- Anton. H, Bivens. I and Davis. S, "Calculus ", Wiley, 10th Edition, 2016
 Bali. N., Goyal. M. and Watkins. C., "Advanced Engineering Mathematics", Firewall
- Media (An imprint of Lakshmi Publications Pvt., Ltd.,), New Delhi, 7th Edition, 2009.

 3. Jain . R.K. and Iyengar. S.R.K., "Advanced Engineering Mathematics ", Publications, New Delhi, 5th Edition, 2016.
- 4. Narayanan. S. and Manicavachagom Pillai. T. K., " Calculus " Volume I and II, S. Viswanathan Publishers Pvt. Ltd., Chennai, 2009.
- 5. Ramana. B.V., " Higher Engineering Mathematics ", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 6. Srimantha Pal and Bhunia. S.C., "Engineering Mathematics "Oxford University Press. 2015.
- 7. Thomas. G. B., Hass. J, and Weir. M.D, "Thomas Calculus ", 14th Edition, Pearson India,

	РО	PSO	PSO	PSO											
	01	02	03	04	05	06	07	08	09	10	11	12	1	2	3
CO1	3	3	1	1	0	0	0	0	2	0	2	3	-	-	
CO2	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO3	3	3	1	1	0	0	0	0	2	0	2	3	-	-	1
CO4	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-
CO5	3	3	1	1	0	0	0	0	2	0	2	3	-	-	
Avg	3	3	1	1	0	0	0	0	2	0	2	3	-	-	-

PH3151

ENGINEERING PHYSICS

LTPC 3 0 0 3

COURSE OBJECTIVES

- To make the students effectively to achieve an understanding of mechanics.
- To enable the students to gain knowledge of electromagnetic waves and its applications.
- To introduce the basics of oscillations, optics and lasers.
- Equipping the students to be successfully understand the importance of quantum physics.
- To motivate the students towards the applications of quantum mechanics.

UNIT I MECHANICS

Multi-particle dynamics: Center of mass (CM) - CM of continuous bodies - motion of the CM kinetic energy of system of particles. Rotation of rigid bodies: Rotational kinematics - rotational kinetic energy and moment of inertia - theorems of M.I.-moment of inertia of continuous bodies -M.I of a diatomic molecule - torque - rotational dynamics of rigid bodies - conservation of angular momentum - rotational energy state of a rigid diatomic molecule - gyroscope - torsional pendulum - double pendulum -Introduction to nonlinear oscillations.

UNIT II ELECTROMAGNETIC WAVES

9

The Maxwell's equations - wave equation; Plane electromagnetic waves in vacuum, Conditions on the wave field - properties of electromagnetic waves: speed, amplitude, phase, orientation and waves in matter - polarization - Producing electromagnetic waves - Energy and momentum in EM waves: Intensity, waves from localized sources, momentum and radiation pressure - Cell-phone reception. Reflection and transmission of electromagnetic waves from a non-conducting medium-vacuum interface for normal incidence.

UNIT III OSCILLATIONS, OPTICS AND LASERS

9

Simple harmonic motion - resonance —analogy between electrical and mechanical oscillating systems - waves on a string - standing waves - traveling waves - Energy transfer of a wave - sound waves - Doppler effect. Reflection and refraction of light waves - total internal reflection - interference —Michelson interferometer —Theory of air wedge and experiment. Theory of laser - characteristics - Spontaneous and stimulated emission - Einstein's coefficients - population inversion - Nd-YAG laser, CO₂ laser, semiconductor laser —Basic applications of lasers in industry.

UNIT IV BASIC QUANTUM MECHANICS

9

Photons and light waves - Electrons and matter waves - Compton effect - The Schrodinger equation (Time dependent and time independent forms) - meaning of wave function - Normalization - Free particle - particle in a infinite potential well: 1D,2D and 3D Boxes-Normalization, probabilities and the correspondence principle.

UNIT V APPLIED QUANTUM MECHANICS

9

The harmonic oscillator(qualitative)- Barrier penetration and quantum tunneling(qualitative)- Tunneling microscope - Resonant diode - Finite potential wells (qualitative)- Bloch's theorem for particles in a periodic potential –Basics of Kronig-Penney model and origin of energy bands.

TOTAL: 45 PERIODS

COURSE OUTCOMES

After completion of this course, the students should be able to

- CO1: Understand the importance of mechanics.
- CO2 :Express their knowledge in electromagnetic waves.
- CO3: Demonstrate a strong foundational knowledge in oscillations, optics and lasers.
- CO4: Understand the importance of quantum physics.
- CO5 :Comprehend and apply quantum mechanical principles towards the formation of energy bands.

TEXT BOOKS:

- 1. D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2017.
- 2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ. Press, 2013.
- 3. <u>Arthur Beiser, Shobhit Mahajan, S. Rai Choudhury</u>, Concepts of Modern Physics, McGraw-Hill (Indian Edition), 2017.

REFERENCES:

- 1. R.Wolfson. Essential University Physics. Volume 1 & 2. Pearson Education (Indian Edition), 2009.
- 2. Paul A. Tipler, Physic Volume 1 & 2, CBS, (Indian Edition), 2004.
- 3. K.Thyagarajan and A.Ghatak. Lasers: Fundamentals and Applications, Laxmi Publications, (Indian Edition), 2019.
- 4. D.Halliday, R.Resnick and J.Walker. Principles of Physics, Wiley (Indian Edition), 2015.
- 5. N.Garcia, A.Damask and S.Schwarz. Physics for Computer Science Students. Springer-Verlag,

CO's-PO's & PSO's MAPPING

CO's					PO's								PSO's)'s
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	1	1	1	-	-	-	-	-	-	-	-	-
2	3	3	2	1	2	1	-	-	-	-	-	-	-	-	-
3	3	3	2	2	2	1	-	-	-	-	-	1	-	-	-
4	3	3	1	1	2	1	-	-	-	-	-	-	-	-	
5	3	3	1	1	2	1	-	-	-	-	-	-	-	-	-
AVG	3	3	1.6	1.2	1.8	1	-	-	-	-	-	1	-	-	-

1-Low,2-Medium,3-High,"-"-no correlation

Note: the average value of this course to be used for program articulation matrix.

CY3151

ENGINEERING CHEMISTRY

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To inculcate sound understanding of water quality parameters and water treatment techniques.
- To impart knowledge on the basic principles and preparatory methods of nanomaterials.
- To introduce the basic concepts and applications of phase rule and composites.
- To facilitate the understanding of different types of fuels, their preparation, properties and combustion characteristics.
- To familiarize the students with the operating principles, working processes and applications of energy conversion and storage devices.

UNIT I WATER AND ITS TREATMENT

9

Water: Sources and impurities, Water quality parameters: Definition and significance of-color, odour, turbidity, pH, hardness, alkalinity, TDS, COD and BOD, flouride and arsenic. Municipal water treatment: primary treatment and disinfection (UV, Ozonation, break-point chlorination). Desalination of brackish water: Reverse Osmosis. Boiler troubles: Scale and sludge, Boiler corrosion, Caustic embrittlement, Priming &foaming. Treatment of boiler feed water: Internal treatment (phosphate, colloidal, sodium aluminate and calgon conditioning) and External treatment – Ion exchange demineralization and zeolite process.

UNIT II NANOCHEMISTRY

9

Basics: Distinction between molecules, nanomaterials and bulk materials; Size-dependent properties (optical, electrical, mechanical and magnetic); Types of nanomaterials: Definition, properties and uses of – nanoparticle, nanocluster, nanorod, nanowire and nanotube. Preparation of nanomaterials: sol-gel, solvothermal, laser ablation, chemical vapour deposition, electrochemical deposition and electro spinning. Applications of nanomaterials in medicine, agriculture, energy, electronics and catalysis.

UNIT III PHASE RULE AND COMPOSITES

ć

Phase rule: Introduction, definition of terms with examples. One component system - water system; Reduced phase rule; Construction of a simple eutectic phase diagram - Thermal analysis; Two component system: lead-silver system - Pattinson process.

Composites: Introduction: Definition & Need for composites; Constitution: Matrix materials (Polymer matrix, metal matrix and ceramic matrix) and Reinforcement (fiber, particulates, flakes and whiskers). Properties and applications of: Metal matrix composites (MMC), Ceramic matrix composites and Polymer matrix composites. Hybrid composites - definition and examples.

UNIT IV FUELS AND COMBUSTION

9

Fuels: Introduction: Classification of fuels; Coal and coke: Analysis of coal (proximate and

ultimate), Carbonization, Manufacture of metallurgical coke (Otto Hoffmann method). Petroleum and Diesel: Manufacture of synthetic petrol (Bergius process), Knocking - octane number, diesel oil - cetane number: Power alcohol and biodiesel.

Combustion of fuels: Introduction: Calorific value - higher and lower calorific values, Theoretical calculation of calorific value; Ignition temperature: spontaneous ignition temperature, Explosive range; Flue gas analysis - ORSAT Method. CO₂ emission and carbon foot print.

UNIT V ENERGY SOURCES AND STORAGE DEVICES

c

Stability of nucleus: mass defect (problems), binding energy; Nuclear energy: light water nuclear power plant, breeder reactor. Solar energy conversion: Principle, working and applications of solar cells; Recent developments in solar cell materials. Wind energy; Geothermal energy; Batteries: Types of batteries, Primary battery - dry cell, Secondary battery - lead acid battery and lithium-ion-battery; Electric vehicles; working principles; Fuel cells: H₂-O₂ fuel cell, microbial fuel cell; Supercapacitors: Storage principle, types and examples.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, the students will be able:

CO1 :To infer the quality of water from quality parameter data and propose suitable treatment methodologies to treat water.

CO2: To identify and apply basic concepts of nanoscience and nanotechnology in designing the synthesis of nanomaterials for engineering and technology applications.

CO3: To apply the knowledge of phase rule and composites for material selection requirements.

CO4: To recommend suitable fuels for engineering processes and applications.

CO5 :To recognize different forms of energy resources and apply them for suitable applications in energy sectors.

TEXT BOOKS:

- 1. P. C. Jain and Monica Jain, "Engineering Chemistry", 17th Edition, Dhanpat Rai Publishing Company (P) Ltd, New Delhi, 2018.
- 2. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2008.
- 3. S.S. Dara, "A Text book of Engineering Chemistry", S. Chand Publishing, 12th Edition, 2018.

REFERENCES:

- B. S. Murty, P. Shankar, Baldev Raj, B. B. Rath and James Murday, "Text book of nanoscience and nanotechnology", Universities Press-IIM Series in Metallurgy and Materials Science, 2018.
- 2. O.G. Palanna, "Engineering Chemistry" McGraw Hill Education (India) Private Limited, 2nd Edition, 2017.
- 3. Friedrich Emich, "Engineering Chemistry", Scientific International PVT, LTD, New Delhi, 2014.
- 4. ShikhaAgarwal, "Engineering Chemistry-Fundamentals and Applications", Cambridge University Press, Delhi, Second Edition, 2019.
- 5. O.V. Roussak and H.D. Gesser, Applied Chemistry-A Text Book for Engineers and Technologists, Springer Science Business Media, New York, 2nd Edition, 2013.

CO-PO & PSO MAPPING

CO			P	0									PS	SO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	1	-	1	1	-	-	-	-	1	-	-	-
2	2	-	-	1	-	2	2	-	-	-	-	-	-	-	-
3	3	1	-	-	-	-	-	-	-	-	-	-	-	-	-
4	3	1	1	-	-	1	2	-	-	-	-	-	-	-	-
5	3	1	2	1	-	2	2	-	-	-	-	2	-	-	-
Avg.	2.8	1.3	1.6	1	-	1.5	1.8	-		-	-	1.5	-	-	-

• 1-low, 2-medium, 3-high, '-"- no correlation

GE3151 PROBLEM SOLVING AND PYTHON PROGRAMMING

LT P C 3 0 0 3

OBJECTIVES:

- To understand the basics of algorithmic problem solving.
- To learn to solve problems using Python conditionals and loops.
- To define Python functions and use function calls to solve problems.
- To use Python data structures lists, tuples, dictionaries to represent complex data.
- To do input/output with files in Python.

UNIT I COMPUTATIONAL THINKING AND PROBLEM SOLVING

9

Fundamentals of Computing – Identification of Computational Problems -Algorithms, building blocks of algorithms (statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), algorithmic problem solving, simple strategies for developing algorithms (iteration, recursion). Illustrative problems: find minimum in a list, insert a card in a list of sorted cards, guess an integer number in a range, Towers of Hanoi.

UNIT II DATA TYPES, EXPRESSIONS, STATEMENTS

9

Python interpreter and interactive mode. debugging: and float. boolean. values types: int, string, and list: variables. expressions, statements, tuple assignment, precedence of operators, comments; Illustrative programs: exchange the values of two variables, circulate the values of n variables, distance between two points.

UNIT III CONTROL FLOW, FUNCTIONS, STRINGS

9

Conditionals: Boolean values and operators, conditional (if), alternative (if-else), chained conditional (if-elif-else); Iteration: state, while, for, break, continue, pass; Fruitful functions: return values,

parameters, local and global scope, function composition, recursion; Strings: string slices, immutability, string functions and methods, string module; Lists as arrays. Illustrative programs: square root, gcd, exponentiation, sum an array of numbers, linear search, binary search.

UNIT IV LISTS, TUPLES, DICTIONARIES

9

Lists: list operations, list slices, list methods, list loop, mutability, aliasing, cloning lists, list parameters; Tuples: tuple assignment, tuple as return value; Dictionaries: operations and methods; advanced list processing - list comprehension; Illustrative programs: simple sorting, histogram, Students marks statement, Retail bill preparation.

UNIT V FILES, MODULES, PACKAGES

Ç

Files and exception: text files, reading and writing files, format operator; command line arguments, errors and exceptions, handling exceptions, modules, packages; Illustrative programs: word count, copy file, Voter's age validation, Marks range validation (0-100).

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, students will be able to

CO1: Develop algorithmic solutions to simple computational problems.

CO2: Develop and execute simple Python programs.

CO3: Write simple Python programs using conditionals and looping for solving problems.

CO4: Decompose a Python program into functions.

CO5: Represent compound data using Python lists, tuples, dictionaries etc.

CO6: Read and write data from/to files in Python programs.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and

programming", 1st Edition, BCS Learning & Development Limited, 2017.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021.
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press, 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

COs-	PO's	& PS	SO's M	ΙΔΡΡΙ	NG

CO's	PO's			PSO's											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	2	- 1	- 1	-	' Æ .	-	2	2	3	3	-
2	3	3	3	3	2	1	7-4	-	4.5	-	2	2	3	-	-
3	3	3	3	3	2		-	-			2		3	-	-
4	2	2		2	2	-	-	-	7 -		1	٠.	3	-	-
5	1	2	-		1	-	-	-		-	1		2	-	-
6	2	2	1	- 1	2	-	-	-	-	-	1	-	2	-	-
AVg.	2	3	3	3	2	-	-		-	-	2	2	3	3	-

1 - low, 2 - medium, 3 - high, '-' - no correlation

GE3152

தமிழர் மரபு

LTPC 1 0 0 1

அலகு I மொழி மற்றும் இலக்கியம்

2

இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் - சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க் காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் - பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு.

அலகு II மரபு – பாறை ஓவியங்கள் முதல் நவீன ஓவியங்கள் வரை – சிற்பக் கலை:

நடுகல் முதல் நவீன சிற்பங்கள் வரை – ஐம்பொன் சிலைகள்– பழங்குடியினர் மற்றும் அவர்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தேர் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் கோவில்களின் பங்கு.

அலகு III நாட்டுப்புறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: 3 தெருக்கூத்து, கரகாட்டம், வில்லுப்பாட்டு, கணியான் கூத்து, ஒயிலாட்டம், தோல்பாவைக் கூத்து, சிலம்பாட்டம், வளரி, புலியாட்டம், தமிழர்களின் விளையாட்டுகள்.

அலகு IV <u>தமிழர்களின் திணைக் கோட்பாடுகள்</u>:

தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழர்கள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும், கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் – சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளில் சோழர்களின் வெற்றி.

அலகு V இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழர்களின் பங்களிப்பு:

இந்திய விடுதலைப்போரில் தமிழர்களின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில், சித்த மருத்துவத்தின் பங்கு – கல்வெட்டுகள், கையெழுத்துப்படிகள் - தமிழ்ப் புத்தகங்களின் அச்சு வரலாறு.

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3152

HERITAGE OF TAMILS

LTPC 1001

UNIT I LANGUAGE AND LITERATURE

2

3

TOTAL: 15 PERIODS

Language Families in India - Dravidian Languages - Tamil as a Classical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II HERITAGE - ROCK ART PAINTINGS TO MODERN ART – SCULPTURE 3
Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making - - Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari,

Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III FOLK AND MARTIAL ARTS

3

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV THINAI CONCEPT OF TAMILS

3

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age - Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V CONTRIBUTION OF TAMILS TO INDIAN NATIONAL MOVEMENT AND INDIAN CULTURE 3

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts – Print History of Tamil Books.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City C ivilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3171

PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY

LTPC

0 0 4 2

OBJECTIVES:

- To understand the problem solving approaches.
- To learn the basic programming constructs in Python.
- To practice various computing strategies for Python-based solutions to real world problems.
- To use Python data structures lists, tuples, dictionaries.
- To do input/output with files in Python.

EXPERIMENTS:

Note: The examples suggested in each experiment are only indicative. The lab instructor is expected to design other problems on similar lines. The Examination shall not be restricted to the sample experiments listed here.

- 1. Identification and solving of simple real life or scientific or technical problems, and developing flow charts for the same. (Electricity Billing, Retail shop billing, Sin series, weight of a motorbike, Weight of a steel bar, compute Electrical Current in Three Phase AC Circuit, etc.)
- 2. Python programming using simple statements and expressions (exchange the values of two variables, circulate the values of n variables, distance between two points).
- 3. Scientific problems using Conditionals and Iterative loops. (Number series, Number Patterns, pyramid pattern)
- 4. Implementing real-time/technical applications using Lists, Tuples. (Items present in a library/Components of a car/ Materials required for construction of a building –operations of list & tuples)
- 5. Implementing real-time/technical applications using Sets, Dictionaries. (Language, components of an automobile, Elements of a civil structure, etc.- operations of Sets & Dictionaries)
- 6. Implementing programs using Functions. (Factorial, largest number in a list, area of shape)
- 7. Implementing programs using Strings. (reverse, palindrome, character count, replacing characters)
- 8. Implementing programs using written modules and Python Standard Libraries (pandas, numpy. Matplotlib, scipy)
- 9. Implementing real-time/technical applications using File handling. (copy from one file to another, word count, longest word)
- 10. Implementing real-time/technical applications using Exception handling. (divide by zero error, voter's age validity, student mark range validation)

TOTAL: 60 PERIODS

- 11. Exploring Pygame tool.
- 12. Developing a game activity using Pygame like bouncing ball, car race etc.

OUTCOMES:

On completion of the course, students will be able to:

- CO1: Develop algorithmic solutions to simple computational problems
- CO2: Develop and execute simple Python programs.
- CO3: Implement programs in Python using conditionals and loops for solving problems...
- CO4: Deploy functions to decompose a Python program.
- CO5: Process compound data using Python data structures.
- CO6: Utilize Python packages in developing software applications.

TEXT BOOKS:

- 1. Allen B. Downey, "Think Python: How to Think like a Computer Scientist", 2nd Edition, O'Reilly Publishers, 2016.
- 2. Karl Beecher, "Computational Thinking: A Beginner's Guide to Problem Solving and Programming", 1st Edition, BCS Learning & Development Limited, 2017.

REFERENCES:

- 1. Paul Deitel and Harvey Deitel, "Python for Programmers", Pearson Education, 1st Edition, 2021
- 2. G Venkatesh and Madhavan Mukund, "Computational Thinking: A Primer for Programmers and Data Scientists", 1st Edition, Notion Press, 2021.
- 3. John V Guttag, "Introduction to Computation and Programming Using Python: With Applications to Computational Modeling and Understanding Data", Third Edition, MIT Press, 2021
- 4. Eric Matthes, "Python Crash Course, A Hands on Project Based Introduction to Programming", 2nd Edition, No Starch Press, 2019.
- 5. https://www.python.org/
- 6. Martin C. Brown, "Python: The Complete Reference", 4th Edition, Mc-Graw Hill, 2018.

COs-PO's & PSO's MAPPING

CO's		PSO's													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	3	-	-	-	-	-	3	2	3	3	-
2	3	3	3	3	3	-	-	-	-	-	3	2	3	-	-
3	3	3	3	3	2	-	-	-	-	-	2	-	3	-	-
4	3	2	-	2	2	-	-	-	-	-	1	-	3	-	-
5	1	2	-	-	1	-	-	-	-	-	1	-	2	-	-
6	2	-	-	-	2	-	-	-	-	-	1	-	2	-	-
AVg.	2	3	3	3	2	-	-	-	-	-	2	2	3	3	-

^{1 -} low, 2 - medium, 3 - high, '-' - no correlation

BS3171

PHYSICS AND CHEMISTRY LABORATORY

L T P C 0 0 4 2

TOTAL: 30 PERIODS

PHYSICS LABORATORY: (Any Seven Experiments)

COURSE OBJECTIVES:

- To learn the proper use of various kinds of physics laboratory equipment.
- To learn how data can be collected, presented and interpreted in a clear and concise manner.
- To learn problem solving skills related to physics principles and interpretation of experimental data.
- To determine error in experimental measurements and techniques used to minimize such error.
- To make the student as an active participant in each part of all lab exercises.

LIST OF EXPERIMENTS

- 1. Torsional pendulum Determination of rigidity modulus of wire and moment of inertia of regular and irregular objects.
- 2. Simple harmonic oscillations of cantilever.
- 3. Non-uniform bending Determination of Young's modulus
- 4. Uniform bending Determination of Young's modulus
- 5. Laser- Determination of the wave length of the laser using grating
- 6. Air wedge Determination of thickness of a thin sheet/wire
- 7. a) Optical fibre -Determination of Numerical Aperture and acceptance angle b) Compact disc- Determination of width of the groove using laser.
- 8. Acoustic grating- Determination of velocity of ultrasonic waves in liquids.
- 9. Ultrasonic interferometer determination of the velocity of sound and compressibility of liquids
- 10. Post office box -Determination of Band gap of a semiconductor.
- 11. Photoelectric effect
- 12. Michelson Interferometer.
- 13. Melde's string experiment
- 14. Experiment with lattice dynamics kit.

COURSE OUTCOMES:

Upon completion of the course, the students should be able to

- CO1: Understand the functioning of various physics laboratory equipment.
- CO2: Use graphical models to analyze laboratory data.
- CO3 :Use mathematical models as a medium for quantitative reasoning and describing physical reality.
- CO4: Access, process and analyze scientific information.
- CO5 :Solve problems individually and collaboratively.

CO's-PO's & PSO's MAPPING

CO's					PO's								F	'SO'	S
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	3	1	1	-	-	-	-	-	-	-	-	-	-
2	3	3	2	1	1	-	-	-	-	-	-	-	-	-	-
3	3	2	3	1	1	-	-	-	-	-	-	-	-	-	-
4	3	3	2	1	1	-	-	-	-	-	-	-	-	-	-
5	3	2	3	1	1	-	-	-	-	-	-	-	-	-	-
AVG	3	2.4	2.6	1	1										

- 1-Low,2-Medium,3-High,"-"-no correlation
- Note: the average value of this course to be used for program articulation matrix.

CHEMISTRY LABORATORY: (Any seven experiments)

OBJECTIVES:

- To inculcate experimental skills to test basic understanding of water quality parameters, such as, acidity, alkalinity, hardness, DO, chloride and copper.
- To induce the students to familiarize with electroanalytical techniques such as, pH metry, potentiometry and conductometry in the determination of impurities in aqueous solutions.
- To demonstrate the analysis of metals and alloys.
- To demonstrate the synthesis of nanoparticles

CHEMISTRY LABORATORY: (Any seven experiments to be conducted)

- 1. Preparation of Na₂CO₃ as a primary standard and estimation of acidity of a water sample using the primary standard
- 2. Determination of types and amount of alkalinity in water sample.
 - Split the first experiment into two
- 3. Determination of total, temporary & permanent hardness of water by EDTA method.
- 4. Determination of DO content of water sample by Winkler's method.
- 5. Determination of chloride content of water sample by Argentometric method.
- 6. Estimation of copper content of the given solution by lodometry.
- 7. Estimation of TDS of a water sample by gravimetry.
- 8. Determination of strength of given hydrochloric acid using pH meter.
- 9. Determination of strength of acids in a mixture of acids using conductivity meter.
- 10. Conductometric titration of barium chloride against sodium sulphate (precipitation titration)
- 11. Estimation of iron content of the given solution using potentiometer.
- 12. Estimation of sodium /potassium present in water using flame photometer.
- 13. Preparation of nanoparticles (TiO₂/ZnO/CuO) by Sol-Gel method.
- 14. Estimation of Nickel in steel
- 15. Proximate analysis of Coal

OUTCOMES:

 To analyse the quality of water samples with respect to their acidity, alkalinity, hardness and DO.

TOTAL: 30 PERIODS

- To determine the amount of metal ions through volumetric and spectroscopic techniques
- To analyse and determine the composition of alloys.
- To learn simple method of synthesis of nanoparticles
- To quantitatively analyse the impurities in solution by electroanalytical techniques

TEXT BOOK:

1. J. Mendham, R. C. Denney, J.D. Barnes, M. Thomas and B. Sivasankar, Vogel's Textbook of Quantitative Chemical Analysis (2009).

CO-PO & PSO MAPPING

СО			P)									PS	3 0	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	-	1	-	-	2	2	-	-	-	-	2	-	-	-
2	3	1	2	-	-	1	2	-	-	-	-	1	-	-	-
3	3	2	1	1	-	-	1	-	-	-	-	-	-	-	-
4	2	1	2	-	-	2	2	-	-	-	-	-	-	-	-
5	2	1	2	-	1	2	2	-	-	-	-	1	-	-	-
Avg	2.6	1.3	1.6	1	1	1.4	1.8	-	-	-	-	1.3	-	-	-

• 1-low, 2-medium, 3-high, '-"- no correlation

GE3172

ENGLISH LABORATORY

L T P C 0 0 2 1

OBJECTIVES:

- To improve the communicative competence of learners
- To help learners use language effectively in academic /work contexts
- To develop various listening strategies to comprehend various types of audio materials like lectures, discussions, videos etc.
- To build on students' English language skills by engaging them in listening, speaking and grammar learning activities that are relevant to authentic contexts.
- To use language efficiently in expressing their opinions via various media.

UNIT I INTRODUCTION TO FUNDAMENTALS OF COMMUNICATION

6

Listening for general information-specific details- conversation: Introduction to classmates - Audio / video (formal & informal); Telephone conversation; Listening to voicemail & messages; Listening and filling a form. Speaking - making telephone calls-Self Introduction; Introducing a friend; - politeness strategies- making polite requests, making polite offers, replying to polite requests and offers- understanding basic instructions(filling out a bank application for example).

UNIT II NARRATION AND SUMMATION

6

Listening - Listening to podcasts, anecdotes / stories / event narration; documentaries and interviews with celebrities. Speaking - Narrating personal experiences / events-Talking about current and temporary situations & permanent and regular situations* - describing experiences and feelings- engaging in small talk- describing requirements and abilities.

UNIT III DESCRIPTION OF A PROCESS / PRODUCT

(

Listening - Listen to product and process descriptions; a classroom lecture; and advertisements about products. Speaking - Picture description- describing locations in workplaces- Giving instruction to use the product- explaining uses and purposes- Presenting a product- describing shapes and sizes and weights- talking about quantities(large & small)-talking about precautions.

UNIT IV CLASSIFICATION AND RECOMMENDATIONS

6

Listening – Listening to TED Talks; Listening to lectures - and educational videos. Speaking – Small Talk; discussing and making plans-talking about tasks-talking about progress- talking about positions and directions of movement-talking about travel preparations- talking about transportation-

UNIT V EXPRESSION

6

Listening – Listening to debates/ discussions; different viewpoints on an issue; and panel discussions. Speaking –making predictions- talking about a given topic-giving opinions-understanding a website-describing processes

TOTAL: 30 PERIODS

LEARNING OUTCOMES:

At the end of the course, learners will be able

- To listen to and comprehend general as well as complex academic texts information
- To listen to and understand different points of view in a discussion
- To speak fluently and accurately in formal and informal communicative contexts
- To describe products and processes and explain their uses and purposes clearly and accurately
- To express their opinions effectively in both formal and informal discussions

ASSESSMENT PATTERN

- One online / app based assessment to test listening /speaking
- End Semester **ONLY** listening and speaking will be conducted online.
- Proficiency certification is given on successful completion of listening and speaking internal test and end semester exam.

CO-PO & PSO MAPPING

CO			Р	O									PS	60	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
2	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
3	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
4	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
5	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-
AVg.	3	3	3	3	1	3	3	3	3	3	3	3	-	-	-

- 1-low, 2-medium, 3-high, '-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

HS3252

PROFESSIONAL ENGLISH-II

L T P C 2 00 2

OBJECTIVES:

- To engage learners in meaningful language activities to improve their reading and writing skills
- To learn various reading strategies and apply in comprehending documents in professional context.
- To help learners understand the purpose, audience, contexts of different types of writing
- To develop analytical thinking skills for problem solving in communicative contexts
- To demonstrate an understanding of job applications and interviews for internship and placements

UNIT I MAKING COMPARISONS

6

Reading - Reading advertisements, user manuals, brochures; Writing - Professional emails, Email etiquette - Compare and Contrast Essay; Grammar - Mixed Tenses, Prepositional phrases

UNIT II EXPRESSING CAUSAL RELATIONS IN SPEAKING AND WRITING

Reading - Reading longer technical texts- Cause and Effect Essays, and Letters / emails of complaint, Writing - Writing responses to complaints. Grammar - Active Passive Voice transformations, Infinitive and Gerunds

UNIT III PROBLEM SOLVING

6

Reading - Case Studies, excerpts from literary texts, news reports etc. Writing – Letter to the Editor, Checklists, Problem solution essay / Argumentative Essay. Grammar – Error correction; If conditional sentences

UNIT IV REPORTING OF EVENTS AND RESEARCH

6

Reading –Newspaper articles; Writing – Recommendations, Transcoding, Accident Report, Survey Report Grammar – Reported Speech, Modals Vocabulary – Conjunctions- use of prepositions

UNIT V THE ABILITY TO PUT IDEAS OR INFORMATION COGENTLY

6

Reading – Company profiles, Statement of Purpose, (SOP), an excerpt of interview with professionals; Writing – Job / Internship application – Cover letter & Resume; Grammar – Numerical adjectives, Relative Clauses.

TOTAL: 30 PERIODS

OUTCOMES:

At the end of the course, learners will be able

- To compare and contrast products and ideas in technical texts.
- To identify and report cause and effects in events, industrial processes through technical texts
- To analyse problems in order to arrive at feasible solutions and communicate them in the written format
- To present their ideas and opinions in a planned and logical manner
- To draft effective resumes in the context of job search.

TEXT BOOKS:

- 1. English for Engineers & Technologists (2020 edition) Orient Blackswan Private Ltd. Department of English, Anna University.
- 2. English for Science & Technology Cambridge University Press 2021.
- 3. Authored by Dr. Veena Selvam, Dr. Sujatha Priyadarshini, Dr. Deepa Mary Francis, Dr. KN. Shoba, and Dr. Lourdes Joevani, Department of English, Anna University.

REFERENCE BOOKS:

- 1. Raman. Meenakshi, Sharma. Sangeeta (2019). Professional English. Oxford university press. New Delhi.
- 2. Improve Your Writing ed. V.N. Arora and Laxmi Chandra, Oxford Univ. Press, 2001, NewDelhi.
- 3. Learning to Communicate Dr. V. Chellammal. Allied Publishers, New Delhi, 2003
- 4. Business Correspondence and Report Writing by Prof. R.C. Sharma & Krishna Mohan, Tata McGraw Hill & Co. Ltd., 2001, New Delhi.
- 5. Developing Communication Skills by Krishna Mohan, Meera Bannerji- Macmillan India Ltd. 1990, Delhi.

ASSESSMENT PATTERN

Two internal assessments and an end semester examination to test students' reading and writing skills along with their grammatical and lexical competence.

CO-PO & PSO MAPPING

СО			Р	0									PS	SO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
2	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
3	3	3	3	3	3	3	3	3	2	3	3	3	-	-	-
4	3	3	3	3	2	3	3	3	2	3	3	3	-	-	-
5	-	-	-	-	-	-	-	-	3	3	3	3	-	-	-
AVg.	3	3	3	3	2.75	3	3	3	2.2	3	3	3	-	-	-

- 1-low, 2-medium, 3-high, '-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

MA3251

STATISTICS AND NUMERICAL METHODS

L T P C 3 1 0 4

OBJECTIVES:

• This course aims at providing the necessary basic concepts of a few statistical and numerical methods and give procedures for solving numerically different kinds of problems occurring in engineering and technology.

- To acquaint the knowledge of testing of hypothesis for small and large samples which plays an important role in real life problems.
- To introduce the basic concepts of solving algebraic and transcendental equations.
- To introduce the numerical techniques of interpolation in various intervals and numerical techniques of differentiation and integration which plays an important role in engineering and technology disciplines.
- To acquaint the knowledge of various techniques and methods of solving ordinary differential equations.

UNIT I TESTING OF HYPOTHESIS

9+3

Sampling distributions - Tests for single mean, proportion and difference of means (Large and small samples) - Tests for single variance and equality of variances - Chi square test for goodness of fit - Independence of attributes.

UNIT II DESIGN OF EXPERIMENTS

9 + 3

One way and two way classifications - Completely randomized design – Randomized block design – Latin square design - 2² factorial design.

UNIT III SOLUTION OF EQUATIONS AND EIGENVALUE PROBLEMS

9+3

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations - Gauss elimination method - Pivoting - Gauss Jordan method - Iterative methods of Gauss Jacobi and Gauss Seidel - Eigenvalues of a matrix by Power method and Jacobi's method for symmetric matrices.

UNIT IV INTERPOLATION, NUMERICAL DIFFERENTIATION AND NUMERICAL INTEGRATION

9+3

Lagrange's and Newton's divided difference interpolations – Newton's forward and backward difference interpolation – Approximation of derivates using interpolation polynomials – Numerical single and double integrations using Trapezoidal and Simpson's 1/3 rules.

UNIT V NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

9+3

TOTAL: 60 PERIODS

Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge-Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams - Bash forth predictor corrector methods for solving first order differential equations.

OUTCOMES:

Upon successful completion of the course, students will be able to:

- Apply the concept of testing of hypothesis for small and large samples in real life problems.
- Apply the basic concepts of classifications of design of experiments in the field of agriculture.
- Appreciate the numerical techniques of interpolation in various intervals and apply the numerical techniques of differentiation and integration for engineering problems.
- Understandthe knowledge of various techniques and methods for solving first and second order ordinary differential equations.
- Solve the partial and ordinary differential equations with initial and boundary conditions by using certain techniques with engineering applications.

TEXT BOOKS:

- 1. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.

REFERENCES:

- 1. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning,

- New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7th Edition, 2007.
- 4. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.
- 5. Spiegel. M.R., Schiller. J. and Srinivasan. R.A., "Schaum's Outlines on Probability and Statistics", Tata McGraw Hill Edition, 4th Edition, 2012.
- 6. Walpole. R.E., Myers. R.H., Myers. S.L. and Ye. K., "Probability and Statistics for Engineers and Scientists", 9th Edition, Pearson Education, Asia, 2010.

	РО	PS	PS	PS											
	01	02	03	04	05	06	07	80	09	10	11	12	01	02	О3
CO1	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO2	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO3	3	3	1	1	1	0	0	0	2	0	2	3	-	-	
CO4	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-
CO5	3	3	1	1	1	0	0	0	2	0	2	3	•	-	-
Avg	3	3	1	1	1	0	0	0	2	0	2	3	-	-	-

PH3258

PHYSICS OF MATERIALS

3 0 0 3

COURSE OBJECTIVES:

- To make the students to understand the basics of phase diagrams and various materials preparation techniques
- To equip the students to have a knowledge on different types of electron theory, basics of quantum mechanics and about superconductors
- To introduce the physics of semiconducting materials and applications of semiconductors in device fabrication
- To familiarize the students with the theory and applications of magnetic and dielectric materials
- To provide the students a sound platform towards learning about advanced materials and their applications.

UNIT I PREPARATION OF MATERIALS

9

Phases - phase rule - binary systems - tie line - lever rule - phase diagram - invariant reactions - nucleation - homogeneous and heterogeneous nucleation - free energy of formation of a critical nucleus - Thin films - preparation: PVD, CVD method - Nanomaterials Preparation: wet chemical, solvothermal, sol-gel method.

UNIT II ELECTRICAL PROPERTIES OF MATERIALS

S

Classical free electron theory - expression for electrical conductivity - thermal conductivity, - Wiedemann-Franz law - Quantum free electron theory - tunneling - degenerate states - Fermi-Dirac statistics - density of energy states - electron in periodic potential - electron effective mass - concept of hole. Superconducting phenomena, properties of superconductors - Meissner effect and isotope effect. Type I and Type II superconductors, High $T_{\rm c}$ superconductors - Magnetic levitation and SQUIDS.

UNIT III SEMICONDUCTING PROPERTIESMATERIALS

9

Elemental Semiconductors - Compound semiconductors - Origin of band gap in solids (qualitative) - carrier concentration in metals - carrier concentration in an intrinsic semiconductor (derivation) - Fermi level - variation of Fermi level with temperature - electrical conductivity - band gap determination - carrier concentration in n-type and p-type semiconductors (derivation) - variation of Fermi level with temperature and impurity concentration - Hall effect - determination of Hall coefficient - LED - Solar cells.

UNIT IV DIELECTRIC AND MAGNETIC MATERIALS

9

Dielectric, Paraelectric and ferroelectric materials - Electronic, Ionic, Orientational and space charge polarization - Internal field and deduction of Clausius Mosotti equation - dielectric loss - different types of dielectric breakdown - classification of insulating materials and their applications - Ferroelectric materials - Introduction to magnetic materials - Domain theory of ferromagnetism, Hysteresis, Soft and Hard magnetic materials - Anti-ferromagnetic materials - Ferrites, Giant Magneto Resistance materials.

UNIT V NEW MATERIALS AND APPLICATIONS

9

Ceramics – types and applications – Composites: classification, role of matrix and reinforcement – processing of fibre reinforced plastics and fibre reinforced metals – Metallic glasses – Shape memory alloys – Copper, Nickel and Titanium based alloys – grapheme and its properties – Relaxor ferroelectrics - Biomaterials – hydroxyapatite – PMMA – Silicone - Sensors: Chemical Sensors - Bio-sensors – Polymer semiconductors – Photoconducting polymers.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On completion of the course, the students should be able to

- CO1 :Acquire knowledge of phase diagram, and thin film and nanomaterial preparation techniques
- CO2 :Familiarize with conducting materials, basic quantum mechanics, and properties and applications of superconductors.
- CO3 :Gain knowledge on semiconducting materials based on energy level diagrams, its types,temperature effect. Also, fabrication methods for semiconductor devices will be understood.
- CO4: Realize with theories and applications of dielectric and ferromagnetic materials
- CO5 :Familiarize with ceramics, composites, metallic glasses, shape memory alloys, biomaterials and their important applications.

TEXT BOOKS:

- 1. W.D.Callitser and D.G.Rethwish. Materials Science and Engineering. John Wiley & Sons, 2014.
- 2. V.Raghavan. Materials Science and Engineering: A First Course. PHI Learning, 2015.
- 3. M.F.Ashby, P.J.Ferreira and D.L.Schodek. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, 2011.

REFERENCES:

- 1. J.F.Shackelford. Introduction to Materials Science for Engineers. Pearson, 2015.
- 2. D.R. Askeland and W.J.Wright. Essentials of Materials Science and Engineering, Cengage Learning, 2013.
- 3. Charles Kittel, Introduction to Solid State Physics, Wiley India Edition, 2019.
- 4. Jean P.Mercier, G.Zambelli and W.Kurz, Introduction to Materials Science, Elsevier, 2002.
- 5. YaserDahman, Nanotechnology and Functional Materials for Engineers, Elsevier, 2017.

CO's-PO's & PSO's MAPPING

CO's						P	O's							PSO's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	2	3	2	1	2	1	-	-	-	1	-	-	-
2	3	3	2	-	-	1	-	-	-	-	-	-	-	-	-
3	3	2	2	1	-	2	1	-	-	-	-	1	-	-	-
4	3	2	-	1	2	2	2	-	-	-	-	1	-	-	-
5	3	-	2	-	2	2	2	-	-	-	-	1	-	-	-
AVG	3	2.25	2	1.66	2	1.6	1.75	1				1			

1-Low,2-Medium,3-High,"-"-no correlation

Note: the average value of this course to be used for program articulation matrix.

BE3252 BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATION LT P C ENGINEERING 3 0 0 3

OBJECTIVES:

- To introduce the basics of electric circuits and analysis
- To impart knowledge in dom wiring
- To impart knowledge in the basics of working principles and application of electrical machines
- To introduce analog devices and their characteristics
- To introduce the functional elements and working of sensors and transducers.

UNIT I ELECTRICAL CIRCUITS

9

DC Circuits: Circuit Components: Conductor, Resistor, Inductor, Capacitor – Ohm's Law - Kirchhoff's Laws – Simple problems- Nodal Analysis, Mesh analysis with Independent sources only (Steady state)

Introduction to AC Circuits and Parameters: Waveforms, Average value, RMS Value, Instantaneous power, real power, reactive power and apparent power, power factor – Steady state analysis of RLC circuits (Simple problems only), Three phase supply – star and delta connection – power in three-phase systems

UNIT II MAGNETIC CIRCUITS AND ELECTRICAL INSTALLATIONS

a

Magnetic circuits-definitions-MMF, flux, reluctance, magnetic field intensity, flux density, fringing, self and mutual inductances-simple problems.

Domestic wiring , types of wires and cables, earthing ,protective devices- switch fuse unit-Miniature circuit breaker-moulded case circuit breaker- earth leakage circuit breaker, safety precautions and First Aid

UNIT III ELECTRICAL MACHINES

9

Construction and Working principle- DC Separately and Self excited Generators, EMF equation, Types and Applications. Working Principle of DC motors, Torque Equation, Types and Applications. Construction, Working principle and Applications of Transformer, Three phase Alternator, Synchronous motor and Three Phase Induction Motor.

UNIT IV ANALOG ELECTRONICS

9

Resistor, Inductor and Capacitor in Electronic Circuits- Semiconductor Materials: Silicon &Germanium – PN Junction Diodes, Zener Diode –Characteristics Applications – Bipolar Junction Transistor-Biasing, JFET, SCR, MOSFET,IGBT – Types, I-V Characteristics and Applications, Rectifier and Inverters, harmonics

UNIT V SENSORS AND TRANSDUCERS

TOTAL: 45 PERIODS

Sensors, solenoids, pneumatic controls with electrical actuator, mechatronics, types of valves and its applications, electro-pneumatic systems, proximity sensors, limit switches, piezoelectric, hall effect, photo sensors, Strain gauge, LVDT, differential pressure transducer, optical and digital transducers, Smart sensors, Thermal Imagers.

COURSE OUTCOMES:

After completing this course, the students will be able to

CO1: Compute the electric circuit parameters for simple problems

CO2: Explain the concepts of domestics wiring and protective devices

CO3: Explain the working principle and applications of electrical machines

CO4: Analyze the characteristics of analog electronic devices

CO5: Explain the types and operating principles of sensors and transducers

TEXT BOOKS:

- 1. D P Kothari and I.J Nagarath, "Basic Electrical and Electronics Engineering", McGraw Hill Education (India) Private Limited, Second Edition, 2020
- 2. A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements &

Instrumentation', Dhanpat Rai and Co. 2015.

- 3. S.K. Bhattacharya, Basic Electrical Engineering, Pearson Education, 2019
- 4. James A Svoboda, Richard C. Dorf, Dorf's Introduction to Electric Circuits, Wiley, 2018

REFERENCES:

- 1. John Bird, "Electrical Circuit theory and technology", Routledge; 2017.
- 2. Thomas L. Floyd, 'Electronic Devices', 10th Edition, Pearson Education, 2018.
- 3. Albert Malvino, David Bates, 'Electronic Principles, McGraw Hill Education; 7th edition, 2017
- 4. Muhammad H.Rashid, "Spice for Circuits and electronics", 4th Edition., Cengage India.2019.
- 5. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

CO's, PO's & PSO's MAPPING

CO's						Р	O's							PSO's	3
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1					1					1	-	-
2	2	1	1					1					ı	•	-
3	2	1	1					1			1		•	•	-
4	2	1	1					1	-	7			1	•	-
5	2	1	1		W			1					-	!	-
Avg.	2	1	1		7 1			1			. **	4		-	-

GE3251

ENGINEERING GRAPHICS

L T P C 2 0 4 4

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- Drawing engineering curves.
- Drawing freehand sketch of simple objects.
- Drawing orthographic projection of solids and section of solids.
- Drawing development of solids
- Drawing isometric and perspective projections of simple solids.

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications — Use of drafting instruments — BIS conventions and specifications — Size, layout and folding of drawing sheets — Lettering and dimensioning.

UNIT I PLANE CURVES

6+12

Basic Geometrical constructions, Curves used in engineering practices: Conics — Construction of ellipse, parabola and hyperbola by eccentricity method — Construction of cycloid — construction of involutes of square and circle — Drawing of tangents and normal to the above curves.

UNIT II PROJECTION OF POINTS, LINES AND PLANE SURFACE

6+12

Orthographic projection- principles-Principal planes-First angle projection-projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method and traces. Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III PROJECTION OF SOLIDS AND FREEHAND SKETCHING

6+12

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is inclined to one of the principal planes and parallel to the other by rotating object method.

Visualization concepts and Free Hand sketching: Visualization principles —Representation of Three Dimensional objects — Layout of views- Freehand sketching of multiple views from pictorial views of objects. Practicing three dimensional modeling of simple objects by CAD Software(Not for examination)

UNIT IV PROJECTION OF SECTIONED SOLIDS AND DEVELOPMENT OF SURFACES 6+12

Sectioning of above solids in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other — obtaining true shape of section. Development of lateral surfaces of simple and sectioned solids — Prisms, pyramids cylinders and cones. Practicing three dimensional modeling of simple objects by CAD Software (Not for examination)

UNIT V ISOMETRIC AND PERSPECTIVE PROJECTIONS 6+12

Principles of isometric projection — isometric scale —Isometric projections of simple solids and truncated solids - Prisms, pyramids, cylinders, cones- combination of two solid objects in simple vertical positions - Perspective projection of simple solids-Prisms, pyramids and cylinders by visual ray method.

Practicing three dimensional modeling of isometric projection of simple objects by CAD Software(Not for examination)

TOTAL: (L=30+P=60) 90 PERIODS

OUTCOMES:

On successful completion of this course, the student will be able to

- Use BIS conventions and specifications for engineering drawing.
- Construct the conic curves, involutes and cycloid.
- · Solve practical problems involving projection of lines.
- Draw the orthographic, isometric and perspective projections of simple solids.
- · Draw the development of simple solids.

TEXT BOOKS:

- 1. Bhatt N.D. and Panchal V.M., "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2019.
- 2. Natrajan K.V., "A Text Book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 3. Parthasarathy, N. S. and Vela Murali, "Engineering Drawing", Oxford University Press, 2015

REFERENCES:

- 1. Basant Agarwal and Agarwal C.M., "Engineering Drawing", McGraw Hill, 2nd Edition, 2019.
- 2. Gopalakrishna K.R., "Engineering Drawing" (Vol. I&II combined), Subhas Publications, Bangalore, 27th Edition, 2017.
- 3. Luzzader, Warren.J. and Duff, John M., "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production, Eastern Economy Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2005.
- 4. Parthasarathy N. S. and Vela Murali, "Engineering Graphics", Oxford University, Press, New Delhi, 2015.
- 5. Shah M.B., and Rana B.C., "Engineering Drawing", Pearson Education India, 2nd Edition, 2009.
- 6. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, 2008.

Publication of Bureau of Indian Standards:

- 1. IS 10711 2001: Technical products Documentation Size and lay out of drawing sheets.
- 2. IS 9609 (Parts 0 & 1) 2001: Technical products Documentation Lettering.
- 3. IS 10714 (Part 20) 2001 & SP 46 2003: Lines for technical drawings.
- 4. IS 11669 1986 & SP 46 —2003: Dimensioning of Technical Drawings.
- 5. IS 15021 (Parts 1 to 4) 2001: Technical drawings Projection Methods.

Special points applicable to University Examinations on Engineering Graphics:

1. There will be five questions, each of either or type covering all units of the syllabus.

- 2. All questions will carry equal marks of 20 each making a total of 100.
- 3. The answer paper shall consist of drawing sheets of A3 size only. The students will be permitted to use appropriate scale to fit solution within A3 size.
- 4. The examination will be conducted in appropriate sessions on the same day

						PC)							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	2		2					3		2	2	2	
2	3	1	2		2					3		2	2	2	
3	3	1	2		2					3		2	2	2	
4	3	1	2		2					3		2	2	2	
5	3	1	2		2					3		2	2	2	
Avg	3	1	2		2					3		2	2	2	
Low (1);	Med	ium (2)	; Hig	h (3)											

GE3252

தமிழரும் தொழில்நுட்பமும்

LTPC 1001

அலகு I <u>நெசவு மற்றும் பானைத் தொழில்நுட்பம்</u>:

ט ט

சங்க காலத்தில் நெசவுத் தொழில் – பானைத் தொழில்நுட்பம் - கருப்பு சிவப்பு பாண்டங்கள் – பாண்டங்களில் கீறல் குறியீடுகள்.

அலகு II <u>வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்</u>:

3

சங்க காலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் & சங்க காலத்தில் வீட்டுப் பொருட்களில் வடிவமைப்பு- சங்க காலத்தில் கட்டுமான பொருட்களும் நடுகல்லும் – சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் - மாமல்லபுரச் சிற்பங்களும், கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் தலங்கள் – நாயக்கர் காலக் கோயில்கள் - மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை மீனாட்சி அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் – பிரிட்டிஷ் காலத்தில் சென்னையில் இந்தோ-சாரோசெனிக் கட்டிடக் கலை.

அலகு III <u>உற்பத்தித் தொழில் நுட்பம்</u>:

:

கப்பல் கட்டும் கலை – உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உருக்குதல், எஃகு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – நாணயங்கள் அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி மணிகள் – சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத்துண்டுகள் – தொல்லியல் சான்றுகள் – சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.

அலகு IV <u>வேளாண்மை மற்றும் நீர்ப்பாசனத் தொழில் நுட்பம்</u>:

3

அணை, ஏரி, குளங்கள், மதகு – சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் – கால்நடை பராமரிப்பு – கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் – வேளாண்மை மற்றும் வேளாண்மைச் சார்ந்த செயல்பாடுகள் – கடல்சார் அறிவு – மீன்வளம் – முத்து மற்றும் முத்துக்குளித்தல் – பெருங்கடல் குறித்த பண்டைய அறிவு – அறிவுசார் சமூகம்.

அலகு V அறிவியல் தமிழ் மற்றும் கணித்தமிழ்:

3

அறிவியல் தமிழின் வளர்ச்சி –கணித்தமிழ் வளர்ச்சி - தமிழ் நூல்களை மின்பதிப்பு செய்தல் – தமிழ் மென்பொருட்கள் உருவாக்கம் – தமிழ் இணையக் கல்விக்கழகம் – தமிழ் மின் நூலகம் – இணையத்தில் தமிழ் அகராதிகள் – சொற்குவைத் திட்டம்.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

GE3252

TAMILS AND TECHNOLOGY

LTPC 1001

UNIT I WEAVING AND CERAMIC TECHNOLOGY

٠.

Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potteries (BRW) – Graffiti on Potteries.

UNIT II DESIGN AND CONSTRUCTION TECHNOLOGY

3

Designing and Structural construction House & Designs in household materials during Sangam Age - Building materials and Hero stones of Sangam age - Details of Stage Constructions in Silappathikaram - Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship places - Temples of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Chetti Nadu Houses, Indo - Saracenic architecture at Madras during British Period.

UNIT III MANUFACTURING TECHNOLOGY

3

Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and gold-Coins as source of history - Minting of Coins - Beads making-industries Stone beads -Glass beads - Terracotta beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silappathikaram.

UNIT IV AGRICULTURE AND IRRIGATION TECHNOLOGY

3

Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husbandry - Wells designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pearl - Conche diving - Ancient Knowledge of Ocean - Knowledge Specific Society.

UNIT V SCIENTIFIC TAMIL & TAMIL COMPUTING

Development of Scientific Tamil - Tamil computing – Digitalization of Tamil Books – Development of Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

TOTAL: 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே. பிள்ளை (வெளியீடு: கமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல. சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Publishedby: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Bookand Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

NCC Credit Course Level 1* NX3251 (ARMY WING) NCC Credit Course Level - I L T PC 2 0 0 2 **NCC GENERAL** 6 NCC 1 Aims, Objectives & Organization of NCC 1 NCC 2 Incentives 2 NCC 3 **Duties of NCC Cadet** 1 NCC 4 NCC Camps: Types & Conduct 2 NATIONAL INTEGRATION AND AWARENESS 4 National Integration: Importance & Necessity NI 1 1 NI 2 Factors Affecting National Integration 1 NI 3 Unity in Diversity & Role of NCC in Nation Building 1 Threats to National Security NI 4 PERSONALITY DEVELOPMENT 7 PD 1 Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and **Problem Solving** 2 PD 2 Communication Skills 3 PD 3 Group Discussion: Stress & Emotions 2 5 **LEADERSHIP** L 1 Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour 'Code 3 Case Studies: Shivaji, Jhasi Ki Rani 2 SOCIAL SERVICE AND COMMUNITY DEVELOPMENT 8 SS 1 Basics, Rural Development Programmes, NGOs, Contribution of Youth

SS 4 SS 5 SS 6 SS 7	Protection of Children and Women Safety Road / Rail Travel Safety New Initiatives Cyber and Mobile Security Awareness				1 1 2
337	Cyber and Mobile Security Awareness	TOTA	AL : 30) PE	RIODS
	NCC Credit Course Level 1*				
NX3252	(NAVAL WING) NCC Credit Course Level - I	L	T	P	С
NCC GE	NERAL	2	0	0	2 6
NCC 1	Aims, Objectives & Organization of NCC				1
NCC 2	Incentives				2
NCC 3 NCC 4	Duties of NCC Cadet NCC Camps: Types & Conduct				1 2
	AL INTEGRATION AND AWARENESS				4
NI 1	National Integration: Importance & Necessity				1
NI 2	Factors Affecting National Integration				1
NI 3 NI 4	Unity in Diversity & Role of NCC in Nation Building Threats to National Security				1
	IALITY DEVELOPMENT			1	7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision	on Mak	ing ar	nd Pr	•
	Solving		3		2
PD 2	Communication Skills				3
PD 3	Group Discussion: Stress & Emotions				2
LEADER L 1	SHIP Leadership Capsule: Traits, Indicators, Motivation, Moral Value	s Hor	our C	aho	5 3
L2	Case Studies: Shivaji, Jhasi Ki Rani	.s, 1101	ioui O	ouc	2
SOCIAL	SERVICE AND COMMUNITY DEVELOPMENT				8
SS 1	Basics, Rural Development Programmes, NGOs, Contribution	of You	ıth		3
SS 4	Protection of Children and Women Safety				1
SS 5 SS 6	Road / Rail Travel Safety New Initiatives				1 2
SS 7	Cyber and Mobile Security Awareness				1
	LKOOKE22 IHKOOGH KNOMFE	TOTA	AL : 30) PE	RIODS
	NCC Credit Course Level 1*				
NX3253	(AIR FORCE WING) NCC Credit Course Level - I	L 2	T 0	P 0	C 2
NCC GE	NERAL				6
NCC 1	Aims, Objectives & Organization of NCC				1
NCC 2 NCC 3	Incentives Duties of NCC Cadet				2 1
NCC 4	NCC Camps: Types & Conduct				2
NATION	AL INTEGRATION AND AWARENESS				4

NI 1	National Integration: Importance & Necessity	1
NI 2	Factors Affecting National Integration	1
NI 3	Unity in Diversity & Role of NCC in Nation Building	1
NI 4	Threats to National Security	1
PERSONA	LITY DEVELOPMENT	7
PD 1	Self-Awareness, Empathy, Critical & Creative Thinking, Decision Making and Probl	em
	Solving	2
PD 2	Communication Skills	3
PD 3	Group Discussion: Stress & Emotions	2
LEADERS	HIP	5
L 1	Leadership Capsule: Traits, Indicators, Motivation, Moral Values, Honour Code	3
L 2	Case Studies: Shivaji, Jhasi Ki Rani	2
SOCIAL SI	ERVICE AND COMMUNITY DEVELOPMENT	R
SS 1	Basics, Rural Development Programmes, NGOs, Contribution of Youth	3
SS 4	Protection of Children and Women Safety	1
SS 5	Road / Rail Travel Safety	1
SS 6	New Initiatives	2
SS 7	Cyber and Mobile Security Awareness	1

GE3271

ENGINEERING PRACTICES LABORATORY

LT PC 0 0 4 2

TOTAL: 30 PERIODS

COURSE OBJECTIVES:

- Drawing pipe line plan; laying and connecting various pipe fittings used in common household plumbing work; Sawing; planing; making joints in wood materials used in commonhousehold wood work.
- Wiring various electrical joints in common household electrical wire work.
- Welding various joints in steel plates using arc welding work; Machining various simple processes like turning, drilling, tapping in parts; Assembling simple mechanical assembly of common household equipments; Making a tray out of metal sheet using sheet metal work.
- Soldering and testing simple electronic circuits; Assembling and testing simple electronic components on PCB.

GROUP - A (CIVIL & ELECTRICAL)

PART I CIVIL ENGINEERING PRACTICES

15

PLUMBING WORK:

- a) Connecting various basic pipe fittings like valves, taps, coupling, unions, reducers, elbows and other components which are commonly used in household.
- b) Preparing plumbing line sketches.
- c) Laying pipe connection to the suction side of a pump
- d) Laying pipe connection to the delivery side of a pump.
- e) Connecting pipes of different materials: Metal, plastic and flexible pipes used inhousehold appliances.

WOOD WORK:

- a) Sawing,
- b) Planing and

c) Making joints like T-Joint, Mortise joint and Tenon joint and Dovetail joint.

Wood Work Study:

- a) Studying joints in door panels and wooden furniture
- b) Studying common industrial trusses using models.

PART II ELECTRICAL ENGINEERING PRACTICES

15

- a) Introduction to switches, fuses, indicators and lamps Basic switch board wiring with lamp, fan and three pin socket
- b) Staircase wiring
- c) Fluorescent Lamp wiring with introduction to CFL and LED types.
- d) Energy meter wiring and related calculations/ calibration
- e) Study of Iron Box wiring and assembly
- f) Study of Fan Regulator (Resistor type and Electronic type using Diac/Triac/guadrac)
- g) Study of emergency lamp wiring/Water heater

GROUP - B (MECHANICAL AND ELECTRONICS) PART III

15

MECHANICAL ENGINEERING PRACTICE WELDING WORK:

- a) Welding of Butt Joints, Lap Joints, and Tee Joints using arc welding.
- b) Practicing gas welding.

BASIC MACHINING WORK:

- a) (simple)Turning.
- b) (simple)Drilling.
- c) (simple)Tapping.

ASSEMBLY WORK:

- a) Assembling a centrifugal pump.
- b) Assembling a household mixer.
- c) Assembling an airconditioner.

SHEET METAL WORK:

a) Making of a square tray

FOUNDRY WORK:

a) Demonstrating basic foundry operations.

15

PART IV

ELECTRONIC ENGINEERING PRACTICES

SOLDERING WORK:

a) Soldering simple electronic circuits and checking continuity.

ELECTRONIC ASSEMBLY AND TESTING WORK:

a) Assembling and testing electronic components on a small PCB.

ELECTRONIC EQUIPMENT STUDY:

- a) Study an elements of smart phone...
- b) Assembly and dismantle of LED TV.
- c) Assembly and dismantle of computer/laptop

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: Draw pipe line plan; lay and connect various pipe fittings used in common household plumbing work; Saw; plan; make joints in wood materials used in common household wood work.

CO2: Wire various electrical joints in common household electrical wire work.

CO3: Weld various joints in steel plates using arc welding work; Machine various simple processes like turning, drilling, tapping in parts; Assemble simple mechanical assembly of common household equipments; Make a tray out of metal sheet using sheet metal work.

CO4 : Solder and test simple electronic circuits; Assemble and test simple electronic components on PCB.

						l	20							PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2			1	1	1					2	2	1	1
2	3	2			1	1	1					2	2	1	1
3	3	2			1	1	1					2	2	1	1
Avg	3	2			1	1	1					2	2	1	1
Low (1); Me	edium	1 (2);	F	ligh (3)				41	Y /			runa .	

BE3272 BASIC ELECTRICAL, ELECTRONICS AND INSTRUMENTATION L T P C ENGINEERING LABORATORY 0 0 4 2

COURSE OBJECTIVES:

- To train the students in conducting load tests electrical machines
- To gain practical experience in experimentally obtaining the characteristics of electronic devices and rectifiers
- To train the students to measure three phase power and displacement

LIST OF EXPERIMENTS

- 1. Verification of ohms and Kirchhoff's Laws.
- 2. Three Phase Power Measurement
- 3. Load test on DC Shunt Motor.
- 4. Load test on Self Excited DC Generator
- 5. Load test on Single phase Transformer
- 6. Load Test on Induction Motor
- 7. Characteristics of PN and Zener Diodes
- 8. Characteristics of BJT, SCR and MOSFET
- 9. Design and analysis of Half wave and Full Wave rectifiers
- 10. Measurement of displacement of LVDT

COURSE OUTCOMES:

After completing this course, the students will be able to

CO1: Use experimental methods to verify the Ohm's law and Kirchhoff's Law and to measure three phase power

TOTAL: 60 PERIODS

CO2: Analyze experimentally the load characteristics of electrical machines

CO3: Analyze the characteristics of basic electronic devices

CO4: Use LVDT to measure displacement

CO's, PO's & PSO's MAPPING

CO's						P	O's							PSO's	3
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	1	2				1.5	2				-	-	-
2	2	3	1	2				1.5	2				-	-	-
3	2	3	1	2				1.5	2				•	•	-
4	2	3	1	2	•			1.5	2				-	-	-
Avg.	1.6	1.4	8.0	1.6				1.2	1.6						

GE3272

COMMUNICATION LABORATORY

L T P C 0 0 4 2

OBJECTIVES

- To identify varied group discussion skills and apply them to take part in effective discussions in a professional context.
- To analyse concepts and problems and make effective presentations explaining them clearly and precisely.
- To be able to communicate effectively through formal and informal writing.
- To be able to use appropriate language structures to write emails, reports and essays
- To give instructions and recommendations that are clear and relevant to the context

UNIT I 12

Speaking-Role Play Exercises Based on Workplace Contexts, - talking about competition-discussing progress toward goals-talking about experiences- talking about events in life-discussing past events-Writing: writing emails (formal & semi-formal).

UNIT II

Speaking: discussing news stories-talking about frequency-talking about travel problems-discussing travel procedures- talking about travel problems- making arrangements-describing arrangements-discussing plans and decisions- discussing purposes and reasons- understanding common technology terms-Writing: - writing different types of emails.

UNIT III 12

Speaking: discussing predictions-describing the climate-discussing forecasts and scenarios-talking about purchasing-discussing advantages and disadvantages- making comparisons-discussing likes and dislikes- discussing feelings about experiences-discussing imaginary scenarios Writing: short essays and reports-formal/semi-formal letters.

UNIT IV DD OCDECC THE OHIGH VILOUHED OF 12

Speaking: discussing the natural environment-describing systems-describing position and movement- explaining rules-(example- discussing rental arrangements)- understanding technical instructions-Writing: writing instructions-writing a short article.

UNIT V 12

Speaking: describing things relatively-describing clothing-discussing safety issues(making recommendations) talking about electrical devices-describing controlling actions- Writing: job application(Cover letter + Curriculum vitae)-writing recommendations.

TOTAL: 60 PERIODS

LEARNING OUTCOMES

At the end of the course, learners will be able

- Speak effectively in group discussions held in a formal/semi formal contexts.
- Discuss, analyse and present concepts and problems from various perspectives to arrive at suitable solutions
- Write emails, letters and effective job applications.
- Write critical reports to convey data and information with clarity and precision
- Give appropriate instructions and recommendations for safe execution of tasks

Assessment Pattern

- One online / app based assessment to test speaking and writing skills
- Proficiency certification is given on successful completion of speaking and writing.

CO-PO & PSO MAPPING

СО			Р	O									PS	SO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	3	3	1	3	3	3	3	3	3	3	-	-	-
2	2	3	3	3	1	3	3	3	3	3	3	3	-	-	-
3	2	2	3	3	1	3	3	3	3	3	3	3	-	-	-
4	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
5	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
AVg.	2.4	2.8	3	3	1.8	3	3	3	3	3	3	3	-	•	-

- 1-low, 2-medium, 3-high, '-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

MA3351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

LT P C 3 1 0 4

OBJECTIVES

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems?
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

UNIT I PARTIAL DIFFERENTIAL EQUATIONS

9 + 3

Formation of partial differential equations –Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types-Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

UNIT II FOURIER SERIES

9 + 3

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

UNIT III APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

9 + 3

Classification of PDE – Method of separation of variables - Fourier series solutions of one dimensional wave equation – One dimensional equation of heat conduction – Steady state solution of two dimensional equation of heat conduction (Cartesian coordinates only).

UNIT IV FOURIER TRANSFORMS

9 + 3

Statement of Fourier integral theorem— Fourier transform pair — Fourier sine and cosine transforms — Properties — Transforms of simple functions — Convolution theorem — Parseval's identity.

UNIT V Z-TRANSFORMS AND DIFFERENCE EQUATIONS

9 + 3

Z-transforms - Elementary properties - Convergence of Z-transforms - - Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations - Solution of difference equations using Z - transforms.

TOTAL: 60 PERIODS

COURSE OUTCOMES:

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

TEXT BOOKS:

- Grewal B.S., "Higher Engineering Mathematics", 44thEdition, Khanna Publishers, New Delhi, 2018.
- 2. Kreyszig E, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, New Delhi, India, 2016.

REFERENCES:

- 1. Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 10th Edition, Laxmi Publications Pvt. Ltd, 2015.
- 3. James. G., "Advanced Modern Engineering Mathematics", 4thEdition, Pearson Education, New Delhi, 2016.
- 4. Narayanan. S., ManicavachagomPillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students". Vol. II & III. S.Viswanathan Publishers Pvt. Ltd. Chennai. 1998.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.
- 6. Wylie. R.C. and Barrett . L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
	01	02	03	'04	05	06	07	08	09	10	11	12	01	02	O 3
CO1	3	3	1	1	0	0	0	0	2	0	0	3	-	-	-
CO2	3	3	1	1	0	0	0	0	2	0	0	3	-	-	-
CO3	3	3	1	1	0	0	0	0	2	0	0	3	-	ı	-
CO4	3	3	1	1	0	0	0	0	2	0	0	3	-	ı	-
CO5	3	3	1	1	0	0	0	0	2	0	0	3	-	-	-
Avg	3	3	1	1	0	0	0	0	2	0	0	3	-	•	-

PY3301

CHEMICAL PROCESS CALCULATIONS

L T P C 2 1 0 3

OBJECTIVES

The course aims to,

• learn about the basic calculation techniques used in process industries

• learn the laws about the behaviour of gases, liquids and solids, for analysing and designing chemical processing equipment with the help of data sources containing relevant physical and chemical properties.

UNIT I UNITS AND DIMENSIONS

9

Fundamental and derived units, conversion, dimensional consistency of equations, conversions of equations, Dimensional and dimensionless constants, mass and volume relations, Stoichiometric and composition relations.

UNIT II IDEAL GASES AND VAPOUR PRESSURE

9

Ideal gas law, Dalton's Law, Amagat's Law and Average molecular weight of gaseous mixtures. Effect of temperature on vapour pressure, Vapour pressure plot (Cox chart), Vapour pressures of miscible and immiscible liquids and solutions, Raoult's Law and Henry's Law.

UNIT III HUMIDITY AND SOLUBILITY

9

Partial saturation, Humidity- Absolute Humidity, Vaporization process, Molal humidity, Relative and percentage saturation, dew point, humid heat, wet bulb and dry bulb temperatures, use of humidity charts, adiabatic vaporization and adiabatic saturation temperature.

UNIT IV MATERIAL BALANCE

9

Tie substance, limiting reactant, excess reactant, General material balance equation for steady and unsteady state, Typical steady state material balances in distillation, absorption, extraction, crystallization. Combustion of coal, fuel gases and sulphur – Recycling operations – Bypassing streams – Degree of conversion – Excess reactant – Limiting reactant Selectivity and Yield.

UNIT V ENERGY BALANCE

9

General steady state energy balance equation, Heat capacity, Enthalpy, Heat of formation, Heat of reaction, Heat of combustion and Calorific values. Heat of solution, Heat of mixing, Heat of crystallization, determination of Δ HR at standard and elevated temperatures, Theoretical flame temperature and adiabatic flame temperature.

SELF STUDY TOPICS (NOT FOR EXAMINATIONS)

Process flow diagram/chart for material and energy balances, Material and energy balances for Chemical reactors.

COURSE OUTCOMES:

TOTAL: 45 PERIODS

- 1. Have a clear idea of various types of unit systems and students will be able to convert units from one form to another.
- 2. Comprehend the different gas laws, and students would be able to solve the problems on stoichiometry quantity of gaseous substances in industry.
- 3. Know the various measurements of humidity and clear about applying humidity charts, psychometric charts, and concepts of vaporization and vapor pressure laws
- 4. analyze the behaviour of recycle processes, performing approximate material balances by hand and setting up calculations for rigorous solution by computer.
- 5. attain the energy balance concepts necessary for solution of energy balance of different chemical engineering processes in industries
- 6. Independently develop a stoichiometry problem solving ability in a number of useful mathematical and chemical operations.

TEXT BOOKS:

- 1. Narayanan, K.V. and Lakshmikutty, B. "Stoichiometry and Process Calculations", 2nd Edition. PHI Learning Pvt. Ltd.. 2017
- 2. Bhatt, B.I. and Thakore, S.M., "Stoichiometry", 5th Edition, Tata McGraw Hill, Education Pvt. Ltd, 2017. 3. Gavhane, K. A. "Introduction to Process Calculations", Nirali Publication, 2016.

REFERENCES:

- 1. Venkataramani, V., Anantharaman, N. and Meera Sheriffa Begum K. M. "Process Calculations", 2nd ed.PHI Learning Pvt. Ltd., 2011
- 2. Himmelblau, D. M. and Riggs, B. J. "Basic Principles and Calculations in Chemical Engineering", 8th Edition, Prentice Hall International series, 2015.
- 3. Sikdar, C.D., "Chemical Process Calculations", PHI Learning Pvt. Ltd., 2013.

Course articulation matrix

Course outcome				Pro	ograi	nme	Out	con	ne				ı	Sp	ramı ecifi tcom	C
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	3				3	2		2			2				
CO2	3	3				2	2		2						3	
CO3	3	3	2		3	2			2						3	2
CO4	3	3	3		3	2	3								3	2
CO5	3	3	2		3		3				77				3	2
CO6	3	3	2		3				2						3	
Average CO	3	3	2.25		3		2.5		2			2			3	2

^{(1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate(Medium) and Substantial (High) respectively.)

BT3352 MICROBIOLOGY L T P C 3 0 0 3

OBJECTIVES

- To introduce students to the principles of Microbiology to emphasize structure and biochemical aspects of various microbes.
- To solve the problems in microbial infection and their control.

UNIT I INTRODUCTION

9

Basics of microbial existence; history of microbiology, classification and nomenclature of microorganisms, microscopic examination of microorganisms, light and electron microscopy; principles of different staining techniques like gram staining, acid fast, capsular staining, flagellar staining.

UNIT II MICROBES- STRUCTURE AND MULTIPLICATION

9

Structural organization and multiplication of bacteria, viruses, algae and fungi, with special mention of life history of actinomycetes, yeast, mycoplasma and bacteriophages.

UNIT III MICROBIAL NUTRITION, GROWTH AND METABOLISM

9

Nutritional requirements of bacteria; different media used for bacterial culture; growth curve and different methods to quantify bacterial growth; aerobic and anaerobic bioenergetics and utilization of energy for biosynthesis of important molecules.

UNIT IV CONTROL OF MICROORGANISMS

9

Physical and chemical control of microorganisms; host-microbe interactions; anti-bacterial, anti-fungal and anti-viral agents; mode of action and resistance to antibiotics; clinically important microorganisms.

UNIT V INDUSTRIAL AND ENVIRONMENTAL MICROBIOLOGY

9

Primary metabolites; secondary metabolites and their applications; preservation of food; production of penicillin, alcohol, vitamin B-12; biogas; bioremediation; leaching of ores by microorganisms; biofertilizers and biopesticides; microorganisms and pollution control; biosensors

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the students would be able to understand about

CO1: Microorganisms and examination of microorganisms

CO2: Structural organization of microorganisms

CO3: Nutritional requirements of microorganisms, their growth and metabolism

CO4: Control of microorganisms

CO5: Metabolites, bioremediation, biofertilizers, biopesticides and biosensors

TEXT BOOKS

- 1. Pelczar MJ, Chan ECS and Krein NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India,2009
- 2. Prescott L.M., Harley J.P., Klein DA, Microbiology, 3rd Edition, Wm. C. Brown Publishers, 1996.

REFERENCE BOOKS

- 1. Black, Text book of microbiology. Freeman Publishers,2016
- 2. Talaron K, Talaron A, Casita, Pelczar and Reid. Foundations in Microbiology, W.C. Brown Publishers, 1993.
- **3.** Ananthanarayan, CK Jayaram Panikars. Text book of Microbiology, 2005, Orient Blackswan Publishers.

(2/2/1	. 1.		,	CO		CO	/PSO I	Mappi	ng							
(3/2/1	ınaıc	cates s	streng	th of		iation eak	1) 3-81	trong,	, 2 — N	vieaiu	ım, ı	_				
Cos				Pro			utcon	nes (P	Os)					PSO	Os	
	P	P	P	P	P	P	P	P	P	P	P	P	PSO	PS	PS	PS
	O	O	O	O	O	О	130	02	O	O						
	1	2	3	4	5	11	12		<u> </u>	3	4					
CO 1	3	2	3	2	2	2	2	2	2	2	2					
CO 2	3	3	2	3	2	2	3	2	2	3	2	2	3	3	2	2
CO 3	2	3	2	3	3	2	3	2	2	3	2	2	3	2	3	3
CO 4	2	3	3	3	3	2	2	2	2	2	3	3	3	2	3	2
CO 5	2	3	2	3	3	2	2	V	2	10.1	2	2	3	3	3	2
CO6	3	2	3	3	3	3	3	2	2	-	3	2	2	2	3	2
Averag e CO	3	3	3	3	3	2	3	2	2	2	2	2	3	2	3	2

OBJECTIVES:

- To inculcate understanding of the properties and principles of medicinal agents that originates from organic and inorganic sources and their application in pharmaceutical industry.
- To provide knowledge on the basic functional group identification, molecular rearrangement, chemical bonding with their reaction mechanism.
- To provide the knowledge on fundamental principles involved in the identification, preparation of pharmaceutical aids and to apply the principle of coordination compounds in pharmaceutical substances.

UNIT I STRUCTURE AND PROPERTIES

С

Atomic orbitals, molecular orbitals theory, wave equation, bonding and antibonding orbitals, hybrid orbitals, covalent bond, polarity of bonds and molecules, dipole moment, resonance, inductive, mesomeric and electromeric effects, intramolecular and intermolecular hydrogen bonding, Isomers, optical activity, stereoisomerism, specification of configuration, chirality,

UNIT II CHEMISTRY OF ALIPHATIC, AROMATIC AND HETEROAROMATIC COMPOUNDS 9 Characteristics of organic compounds, structure, nomenclature, preparation and reaction mechanism of alkyl and aryl halides, Nucleophilic aliphatic substitution reaction, Elimination reactions, electrophilic addition reactions, Markownikoff's orientation, AntiMarkownikoff's orientation. Huckel's rule, structures, synthesis, properties and chemical reactions of benzenoid and nonbenzenoid compounds, Electrophilic aromatic substitution reaction, General principles of heterocyclic synthesis – Methods of preparation and reactions of Pyridines – Pyrroles – Thiophenes – Furans – Quinolines – Isoquinolines.

UNIT III QUALITY CONTROL OF DRUGS AND PHARMACEUTICALS

9

Importance of quality control, significant errors, methods used for quality control, History of Pharmacopoeia, Identification and characterization of impurities in Pharmaceutical substances, Limit tests: Definition, importance, general procedure for limit test for chlorides, sulphates, iron, arsenic, heavy metals and lead with suitable examples. Identification test for Magnesium hydroxide, Ferrous sulphate, Calcium gluconate, Copper sulphate. Test for purity: Swelling power of Bentonite, Neutralizing capacity of aluminum hydroxide gel, Determination of potassium iodate and iodine in potassium lodide Preparation of inorganic pharmaceuticals: Boric acid, Potash alum and Ferrous sulphate.

UNIT IV STUDY OF ORGANIC REACTIONS AND MOLECULAR REARRANGEMENTS 9
Alder Reaction, Formylation reactions, Gattermann Reaction, Gattermann-Koch reaction, Vilsmeier reaction, Azide-Alkyne Cycloaddition, Catalytic hydrogenation, Meerwein-Ponndorf-Verley, Birch reduction, Clemmenson, Sandmeyer, Haloform reactions, Azo coupling, Beckmann Rearrangement, Benzidine rearrangement.

UNIT V RADIOPHARMACEUTICALSAND CO-ORDINATION COMPOUNDS

9

TOTAL: 45 PERIODS

Radio activity, Measurement of radioactivity, Properties of α , β , γ radiations, Half life, radio isotopes and study of radio isotopes - Sodium iodide I¹³¹, Storage conditions, precautions & pharmaceutical application of radioactive substances. Theory of co-ordination compounds with special reference to application in Pharmacy: EDTA, Dimercaprol, Penicillamine, 1, 10-Phenanthroline.

SELF STUDY TOPICS (NOT FOR EXAMINATIONS)

Indian Pharmacopoeia, United States Pharmacopeia, British Pharmacopoeia, European Pharmacopoeia, International Pharmacopoeia

COURSE OUTCOMES:

After completion of the course the student will be able to

- identifythe relationship between structure and physical propertiespharmaceutical substances and make predictions of chemical bonding along with their reaction mechanism.
- draw the structures and outline the synthesis of simple pharmaceutically active organic compounds having five and six membered heterocyclic compounds.
- describe the sources of impurities and methods to determine the impurities in inorganic drugs and pharmaceuticals.
- distinguish between various reaction mechanism and well acquainted with the synthesis of some important class of drugs.
- apply the knowledge in the handling of radiopharmaceuticals and synthesis of new drug molecule with special reference to organic, inorganic and coordination chemistry.

TEXT BOOKS:

- 1. V.Algarsamy, Pharmaceutical Organic Chemistry, Kindle edition, 2020.
- 2. V.N.Rajasekaran, Textbook of Pharmaceutical Inorganic Chemistry Theory and Practical, CBS Publishers, 2019
- 3. R.K. Sharma, Text Book of Coordination Chemistry, 1stEdition, Discovery Publishing House Pvt. Ltd.2011.

REFERENCES:

- 1. Jr. Leroy G. Wade, Jan William Simek, Maya Shankar Singh, Organic Chemistry, 9 Edition, Pearson Publisher, 2019
- 2. L.M. Atherden, Bentley and Driver's Textbook of Pharmaceutical Chemistry, 8th Edition, Oxford Publisher, 2020
- 3. P. L. Soni, VandnaSoni,The Chemistry of Coordination Complexes and Transition Metals, 1st Edition, CRC Press, 2021.
- 4. Jie Jack Li, Name Reactions A Collection of Detailed Mechanisms and Synthetic Applications, 6th Edition, Springer Publisher, 2021.

Course Articulation Matrix

				Pr	ograi	mmeO	utcor	nes(F	PO)	7	7			grami cific (O)		mes
Course	РО	РО	PO	РО	РО	РО	PO	РО	PS	PS	PS	PS				
outcome	1	2	3	4	5	11	12	01	02	O3	04					
CO1	3	3				2	1			2		2	3			2
CO2	3	2	3				1			2	7	2	2		3	
CO3	3	3	3				2			2	7	2	3		3	
CO4	3	1		3			1			2		2	2		3	
CO5	3	1	D A	3	111	71	1	HC.	1 1	2		2	3			1
CO6	3	1	N.W.	3	177	2	2	2	2	2		2	3		3	2
Average CO	3	1.8	3	3	-	2	1.3	2	2	2	-	2	2.3	-	3	1.6

BT3392 BIOCHEMISTRY L T P C 3 0 0 3

OBJECTIVE

• To enable students learn the fundamentals of Biochemical Processes and Biomolecules

UNIT I INTRODUCTION TO BIOMOLECULES - CARBOHYDRATES:

^

Basic principles of organic chemistry, role of carbon, types of functional groups, chemical, nature of water, pH and biological buffers, bio molecules structure and properties of

Carbohydrates (mono, di, oligo & polysaccharides) Proteoglycans, glucosaminoglycans. mutarotation, glycosidic bond, reactions of monosaccharides, reducing sugars. Starch, glycogen, cellulose and chitin. Proteoglycans, glycosaminoglycans. hyaluronic acid, chondroitin sulfate

UNIT II STRUCTURE AND PROPERTIES OF OTHER BIOMOLECULES

9

Structure and properties of Important Biomolecules.

Lipids: fatty acids, glycerol, saponification, iodination, hydrogenation, phospholipids, glycolipids, sphingolipids, cholesterol, steroids, prostaglandins.

Protein: Amino Acids, Peptides, Proteins, measurement, structures, hierarchy of organization primary, secondary, tertiary and quaternary structures, glycoproteins, lipoproteins. Determine of primary structure.

Nucleic acids: purines, pyrimidines, nucleoside, nucleotide, RNA, DNA-Watson-Crick structure of DNA, reactions, properties, measurement, nucleoprotein complexes

UNIT III METABOLISM CONCEPTS AND CARBOHYDRATE METABOLISM 9

Functions of Proteins, Enzymes, introduction to biocatalysts, metabolic pathways, primary and secondary metabolites. Interconnection of pathways and metabolic regulation. Glycolysis, TCA cycle, gluconeogenesis, pentose phosphate shunt & glyoxalate shunt.

UNIT IV INTERMEDIARY METABOLISM AND REGULATION

9

Fatty acid synthesis and oxidation, reactions of amino acids, deamination, transamination and decarboxylation, urea cycle, Bioenergetics - High energy compounds, electronegative potential of compounds, respiratory chain, ATP cycle, calculation of ATP yield during oxidation of glucose and fatty acids.

UNIT V PROTEIN TRANSPORT AND DEGRADATION

9

Protein targeting, signal sequence, secretion; Folding, Chaperone and targeting of organelle proteins, Protein degradation, receptor-mediated endocytosis, turnover.

TOTAL: 45 PERIODS

OUTCOMES

Upon completion of this course the student will be able to

- Ensure students have a strong foundation in the structure and reactions of biomolecules.
- Introduce them to metabolic pathways of the major biomolecules and relevance to clinical conditions.
- Correlate biochemical processes with biotechnology application.
- Understand in detail about structures, types and classifications of amino acid.
- Illustrate the metabolism of carbohydrates through various anabolic and catabolic pathways.
- Relate the structure of DNA with its function in replication and gene expression.

TEXT BOOKS

- 1. Lehninger Principles of Biochemistry 6th Edition by David L. Nelson, Michael M. Cox W.H.Freeman and Company 2017
- 2. Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Allied Ltd., 2006.
- 3. Rastogi, S.C. "Biochemistry" 2nd Edition, Tata McGraw-Hill, 2003.
- 4. Conn, E.E., etal., "Outlines of Biochemistry" 5th Edition, John Wiley & Sons, 1987.
- 5. Outlines of Biochemistry, 5th Edition: By E E Conn, P K Stumpf, G Bruening and R Y Doi. pp 693. John Wiley and Sons, New York. 1987.

REFERENCES

- 1. Berg, Jeremy M. et al. "Biochemsitry", 6th Edition, W.H. Freeman & Co., 2006.
- 2. Murray, R.K., etal "Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill, 2018.
- 3. Voet, D. and Voet, J.G., "Biochemistry", 4th Edition, John Wiley & Sons Inc., 2010.

((3/2/1 i	ndicate	es strer		CO / P			g, 2 –]	Mediu	m, 1 –	Weak		C	O/PSO I	Mapping	g
COs				F	rogran	nme O	utcome	es (POs	s)					PSO	Os	
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 12	PSO1	PSO 2	PSO 3	PSO 4					
CO 1	3	3	2	2	2	2	3	3	3	3	3	2				
CO 2	2	2	3	2	2	2	2	2	-	3	2	3	2	2	2	1
CO 3	3	3	3	2	3	-	2	1	-	2	1	1	3	3	2	1
CO 4	2	3	3	3	2	-	3	-	1	2	1	1	3	3	2	2
CO 5	2	3	3	2	3	2	3	2	2	1	2	2	2	2	3	3
CO6	2	3	3	2	2	3	1	3	2	1	3	3	3	3	2	3

PY3391

HUMAN ANATOMY AND PHYSIOLOGY

L T P C

OBJECTIVES:

 To explain the gross morphology, structure and functions of various organs of the human body and describe the various homeostatic mechanism and their imbalance.

UNIT I HEMOPOIETIC SYSTEM

9

Composition and functions of blood, Hemopoiesis, blood components, blood groups, clotting factors and mechanism of coagulation, platelets.

UNIT II CARDIOVASCULAR SYSTEM

9

Anatomy and function of the heart, circulation: pulmonary, coronary, and systematic circulation; electrocardiogram (ECG), cardiac cycle and heart sounds, blood pressure - its maintenance and regulation.

UNIT III RESPIRATORY SYSTEM

9

Anatomy of respiratory organs and functions, mechanism/physiology of respiration and regulation of respiration, transport of respiratory gases, respiratory volumes and capacities.

UNIT IV NERVOUS SYSTEM

9

Classification of the nervous system, anatomy, physiology, and functional areas of the cerebrum, cerebellum, midbrain, thalamus, hypothalamus and basal ganglia, spinal cord: structure and reflexes.

UNIT V ENDOCRINE SYSTEM

9

Classification of hormones, mechanism of hormone action, structure and functions of pituitary gland, thyroid gland, parathyroid gland, adrenal glands, pancreas, pineal gland, thymus.

TOTAL 45 PERIODS

COURSE OUTCOMES:

At the end of the course, the students will be able to

- Acquire the gross histology, structure and functions of various organs of the human body
- Implement the physiological tests and appreciate the interlinked mechanisms in the maintenance of normal functioning of human body
- Perform basic physiological and pharmacological experiments and to record and interpret the results for its clinical significance.
- Demonstrate laboratory procedures used to examine anatomical structures and evaluate physiological functions of each organ system
- Interpret graphs of anatomical and physiological data.
- Apply the methods to evaluate the potency of drugs, toxicity of drugs in animal models.

TEXTBOOKS

- 1. Essentials of Medical Physiology by K. Sembulingam and P. Sembulingam. Jaypee brothers medical publishers, New Delhi.
- 2. Human Physiology (vol 1 and 2) by Dr. C.C. Chatterrjee, Academic Publishers Kolkata.

REFERENCE BOOKS

- 1. Anatomy and Physiology in Health and Illness by Kathleen J.W. Wilson, Churchill Livingstone, New York.
- 2. Vander's Human Physiology: The Mechanisms of Body Function, Eric Widmaier, Hershel Raff, Kevin Strang, 2015, Edition:14, Publisher: McGraw-Hill
- 3. Hole's human anatomy & physiology David Shier, Ricki Lewis, Jackie Butler Year: 2019, Edition: Fifteenth, Publisher: Mcgraw hill Education
- 4. Germann, W.J., Stanfield, C.L. (eds.) (2002) Principles of Human Physiology, Pearson Education, Inc./ Benjamin Cummings, San Francisco, CA.
- 5. Guyton AC and Hall JE (eds.) (2000) Textbook of Medical Physiology, 10th edition. W.B. Saunders Co., Philadelphia, PA.
- 6. Tortora, G.J. and Grabowski, S.R. (eds.) (2000) Principles of Anatomy and Physiology, 9th edition. John Wiley & Sons, Inc., New York, NY.
- 7. Anatomy and Physiology 2e J. Gordon Betts, Tyler, Texas Kelly A. Young, Long Beach, California James A Wise, Hampton, Virginia Copyright Year: 2021

Course Articulation Matrix

			7	Pi	ogra	mmeO	utcor	nes(F	' O)	1	X	-1			me outco	mes
Course	PO	РО	PO	РО	PO	PS	PS	PS	PS							
outcome	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	O3	04
CO1		3					2	1	2				3		2	
CO2	3	3			2		3							3	2	
CO3		3		3	2							3			3	
CO4	3	3					3						2	3		
CO5			3		2		2								3	2
CO6	3	3	3		3	-	2			1		A	2			3
Average CO	3	3	3	3	2.2		2.4	1	2	1	1	3	2.3	3	2.5	2.5

PY3311

MICROBIOLOGY LABORATORY

L T P C

OBJECTIVES:

 To practically demonstrate various experimental techniques to identify the morphology, culture characteristics, propagation and control of microbes and industrial applications of microbes.

EXPERIMENTS

- 1. Demonstration of efficiency of sterilization techniques.
- 2. Preparation of various types of culture media: nutrient broth and agar
- 3. Culture techniques: isolation and preservation of cultures: broth: flask, test tubes; agar: pour plates, streak plates, slants, stabs
- 4. Microscopic identification of bacteria
- 5. Staining techniques: simple, differential- gram's staining, spore /capsule staining
- 6. Quantification of microbes: sampling and serial dilution; bacterial count, total count and viable count.
- 7. Determination of phenol coefficient to demonstrate efficiency of a disinfectant

- 8. Perform and report sensitivity of antibiotics (Disc diffusion and well diffusion)
- 9. Inoculate, Incubate and plot the growth curve of bacteria (E.coli)
- 10. Effect of pH, Temperature, UV radiation on Growth of bacteria (E.coli)
- 11. Determination of microbial inhibitory concentration (MIC).
- 12. Biochemical identification of unknown microbes
- 13. Demonstration of alcohol fermentation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students will be able to

- 1. Understand the advanced technical information pertaining to laboratory bio-safety and preventive measures from pathogenic microorganism.
- 2. Develop the minimum skills to work on several important techniques using equipment for the study of microorganisms. Microscopically examine living microorganisms.
- 3. Familiar with the types of laboratory equipment and culture media needed to develop and maintain pure cultures.
- 4. Carry out the technique for aseptic removal and transfer of microorganisms for subculturing.
- 5. Determine the cultural characteristics of microorganisms as an aid in identifying and classifying organisms into taxonomic groups.
- 6. Practical use of the compound microscope for visualization of cellular morphology from stained slide preparations.

REFERENCE BOOKS

- 1. Practical Handbook of Microbiology, Second edition, Edited by Emanuel Goldman, Lorrence H Green, CRC Press.
- 2. Cappuccino, J.G. and N. Sherman "Microbiology: A Laboratory Manual", Global Edition, Pearson, 2018.
- 3. Collee, J.G. etal., "Mackie & Mc Cartney Practical Medical Microbiology" 4th Edition, Churchill Livingstone, 1996.

Course Articulation Matrix

			1	Pro	ogran	nme O	utcor	nes (PO)		/	1			me outco	mes
Course	РО	PO	PO	PO	РО	РО	РО	РО	PS	PS	PS	PS				
outcome	1	2	3	4	5	11	12	01	02	O3	04					
CO1	3				2		2						75-04.2		3	2
CO2		3		3	2	3								3	2	
CO3			3	3	2	7	1	LA	1 1/	HAI		15.0	2			
CO4	3	3		1/15	4		2			2				3		
CO5			3	3			2			2		2			3	
CO6			3			3			2			2	3		2	2
Average CO	3	3	3	3	2	3	1.7	1	2	2	ı	2	1.6	3	2.5	2

PY3312 BIOCHEMISTRY AND PHYSIOLOGY LABORATORY

L T P C 0 0 3 1.5

OBJECTIVES

The course aims the students to.

- Learn and understand the principles behind the qualitative and quantitative estimation of biomolecules (proteins, carbohydrates, lipids, metabolites etc.,).
- To learn the gross histology, structure and functions of various organs of the human body and perform the physiological tests and appreciate the interlinked mechanisms in the maintenance of normal functioning of human body

LISTOFEXPERIMENTS

Biochemistry

- 1. Qualitative tests for carbohydrates—distinguishing reducing from non-reducing sugars and keto from aldo sugars.
- 2. Quantitative method for aminoacid estimation usingbninhydrin-distinguishing amino from imino acid.
- 3. Quantitative analysis of carbohydrates (Benedict's method etc.,)
- 4. Protein estimation by Biuret, Lowry's method, Bradford and spectroscopic methods
- 5. Extraction of lipids and analysis byTLC.
- 6. Enzymatic assay:phosphatase from potato.
- 7. Enzymatic assay: estimation of glucose by GOD-POD method.
- 8. Estimation of chloride, glucose, ammonia and creatinine in urine.

Physiology

- 1. Study of different systems with the help of models (axial skeleton, appendicular skeleton, cardiovascular system, respiratory system, digestive system, urinary system, nervous system, special senses, reproductive system)
- 2. Determination of bleeding and clotting time
- 3. Determination of R.B.C. and W.B.C count of blood
- 4. Estimation of Haemoglobin
- 5. Determination of differential count of blood WBCs.
- 6. Enumeration of RBC
- 7. Determination of Erythrocyte Sedimentation Rate
- 8. Blood group determination
- 9. Observation of osmotic fragility of RBCs
- 10. Determination of packed cell volume and calculation of blood indices
- 11. Heart rate and blood pressure recording
- 12. ECG recording
- 13. Examination of respiratory system and recording of respiratory movements
- 14. Preparation of physiological solution: Ringers' solution, Tyrode solution, Krebs solution, Normal saline.

TOTAL:45 PERIODS

COURSE OUTCOMES:

On completion of the course, the students would be able to

- 1. Apply basic principles of chemistry to biological systems and molecular biology.
- 2. Correlate molecular structure and interactions present in proteins, nucleic acids, carbohydrates and lipids
- 3. Perform procedure to characterize the biomolecules using microscopy.
- 4. Understand the gross histology, structure and functions of various organs of the human body
- 5. Implement the physiological tests and appreciate the interlinked mechanisms in the maintenance of normal functioning of human body
- 6. Perform basic physiological and pharmacological experiments and to record and interpret the results for its clinical significance.

REFERENCE BOOKS:

- 1. Human anatomy & physiology laboratory manual. Cat version Marieb, Elaine Nicpon, Mitchell, Susan J., Smith, Lori A., Zao, Peter Z. Year: 2016 Edition: Twelfth edition, cat version. Publisher: Pearson
- 2. Laboratory Manual for Anatomy & Physiology Featuring Martini Art, Cat Version Year: 2016 Edition: 6th Edition Publisher: Pearson
- 3. Practical Biochemistry with Clinical Correlation for MBBS Students, Poonam Agrawal. Year: 2020, Edition: 1, Publisher: CBS Publishers and Distributors Pvt Ltd
- 4. Practical Biochemistry for Colleges, E. J. Wood (Eds.) Year: 1989 Edition: 1st ed Publisher: Pergamon Press

- 5. Experimental Biochemistry, Robert L. Switzer, Liam F. Garrity Year: 1999 Edition: 3rd ed Publisher: W. H. Freeman and Co
- 6. Principles and techniques of practical biochemistry and molecular biology. Keith Wilson, John Walker Year: 2005 Edition

Course Articulation Matrix

				Pı	ograi	mmeO	utcor	nes(F	PO)						me outco	mes	
Course	РО	РО															
outcome	1	2 3 4 5 6 7 8 9 10 11 12 O1 O2 O3 O4															
1			2 3 4 5 6 7 8 9 10 11 12 O1 O2 O3 O4 3 3 3 2														
2	3	2		3			2							3	2		
3	3			3	3			1							3		
4	3				3		3			y ,-			2	3			
5	3	2		3	2					2					3	2	
6	3		3		3	- 11		3	9.	h .			2			3	
Average	3	2	3	3	2.5	7	2.5	2	- 1	2	-	3	2.3	3	2.5	2.5	

GE3361

PROFESSIONAL DEVELOPMENT

LTPC 0 021

OBJECTIVES:

- To be proficient in important Microsoft Office tools: MS WORD, EXCEL, POWERPOINT.
- To be proficient in using MS WORD to create quality technical documents, by using standard templates, widely acceptable styles and formats, variety of features to enhance the presentability and overall utility value of content.
- To be proficient in using MS EXCEL for all data manipulation tasks including the common statistical, logical, mathematical etc., operations, conversion, analytics, search and explore, visualize, interlink, and utilizing many more critical features offered
- To be able to create and share quality presentations by using the features of MS PowerPoint, including: organization of content, presentability, aesthetics, using media elements and enhance the overall quality of presentations.

MS WORD: 10 Hours

Create and format a document

Working with tables

Working with Bullets and Lists

Working with styles, shapes, smart art, charts

Inserting objects, charts and importing objects from other office tools

Creating and Using document templates

Inserting equations, symbols and special characters

Working with Table of contents and References, citations

Insert and review comments

Create bookmarks, hyperlinks, endnotes footnote

Viewing document in different modes

Working with document protection and security

Inspect document for accessibility

MS EXCEL: 10 Hours

Create worksheets, insert and format data

Work with different types of data: text, currency, date, numeric etc.

Split, validate, consolidate, Convert data

Sort and filter data

Perform calculations and use functions: (Statistical, Logical, Mathematical, date, Time etc.,)

Work with Lookup and reference formulae

Create and Work with different types of charts

Use pivot tables to summarize and analyse data

Perform data analysis using own formulae and functions

Combine data from multiple worksheets using own formulae and built-in functions to generate results

Export data and sheets to other file formats

Working with macros

Protecting data and Securing the workbook

MS POWERPOINT: 10 Hours

Select slide templates, layout and themes

Formatting slide content and using bullets and numbering

Insert and format images, smart art, tables, charts

Using Slide master, notes and handout master

Working with animation and transitions

Organize and Group slides

Import or create and use media objects: audio, video, animation

Perform slideshow recording and Record narration and create presentable videos

TOTAL: 30 PERIODS

OUTCOMES:

On successful completion the students will be able to

- Use MS Word to create quality documents, by structuring and organizing content for their day to day technical and academic requirements
- Use MS EXCEL to perform data operations and analytics, record, retrieve data as per requirements and visualize data for ease of understanding
- Use MS PowerPoint to create high quality academic presentations by including common tables, charts, graphs, interlinking other elements, and using media objects.

PY3401 APPLIED CHEMICAL ENGINEERING THERMODYNAMICS

LTPC

OBJECTIVES

• Students will learn about the behavior of fluids, laws of thermodynamics, thermodynamic property relations and their application in different chemical processes.

UNIT I CONCEPTS OF THERMODYNAMICS

9

Scope of thermodynamics, basic concepts and definitions, Equilibrium state and phase rule, Energy, Work, Temperature and Zeroth Law of Thermodynamics, reversible and irreversible process, Ideal gas- Equation of State involving ideal and real gas, Law of corresponding states, Compressibility chart, First Law of Thermodynamics and its consequences.

UNIT II LAWS OF THERMODYNAMICS

9

Joule's experiment, internal energy, enthalpy, Application of first Law of Thermodynamics for Flow and non flow processes. Limitations of the first Law, statements of second Law of Thermodynamics and its Applications, Heat Engine and Heat Pump.

UNIT III THERMODYNAMIC POTENTIALS

Ç

Thermodynamic Potentials, thermodynamic correlation, Maxwell relations, criteria for Equilibria and stability. Clapeyron equation, partial molar properties, ideal and non-ideal solutions, standard states definition and choice

UNIT IV ACTIVITY COEFFICIENT

9

Activity coefficient-composition models, Gibbs-Duhem equation, effect of pressure and temperature on activity co-efficient, activity and property change of mixing, excess properties of mixtures.

UNIT V PHASE EQUILIBRIA

9

Thermodynamic consistency of phase equilibria, phase equilibria in single and multicomponent systems, Duhem's theorem, vapor-liquid equilibria and non-ideal solutions. Chemical reaction equilibria, Extent of reaction, equilibrium constant and standard free energy change

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On completion of the course, the students would be able to

- 1. Understand the basic concepts, laws and different process related to chemical engineering thermodynamics.
- 2. Identify the laws related to chemical engineering thermodynamics, thermodynamic principles, flow process and its thermodynamic application
- 3. Understand the thermodynamic potential, its correlation and analyze and distinguish between ideal and non-ideal solution.
- 4. Understand and demonstrate the activity coefficient and activity property of solution.
- 5. Demonstrate the Chemical and phase equilibria equations
- 6. Understand the interrelationships between different thermodynamic properties and become familiar with the Thermodynamic plots.

TEXT BOOKS:

- 1. Sonntag, Borgnakke, Van Wylen, Fundamentals of Thermodynamics, 7th Edition, Wiley India, New Delhi, 2009.
- 2. Narayanan, K.V. A Textbook of Chemical Engineering Thermodynamics Prentice Hall India, 2004
- 3. Smith, J.M., Van Ness, H.C. and Abbott, M.M "Chemical Engineering Thermodynamics", 7th Edition, McGraw Hill, New York, 2005

REFERENCES:

- 1. S. I. Sandler, Chemical, Biochemical and Engineering Thermodynamics, Wiley New York, 2006
- 2. Y V C Rao, "Chemical Engineering Thermodynamics", Universities Press, Hyderabad 2005.
- 3. Pradeep ahuja," Chemical Engineering Thermodynamics", PHI Learning Ltd (2009).
- 4. Gopinath Halder," Introduction to Chemical Engineering Thermodynamics", PHI Learning Ltd (2009).

Course articulation matrix

		P	RO	Progra	mme	Outco	mes(l	PO)	KI	101	V L E	DGE	Prog spec (PSC	gramı cific o O)	ne outco	mes
Course	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS	PS
outco	co 1 2 3 4 5 6 7 8 9 10 11														0	0
me															3	4
CO1	3	3							1			2			3	2
CO2		3	3		2										3	
CO3			3	3	2	2			1	2				3		
CO4		3			3				2	1				3		
CO5	3		3	2		1							3			
CO6	3	3		3				2				2		3	2	2
Averag	3	3	3	2.6	2.3	1.5		0.6	1.3	1.5		2	3	3	2.6	2.6
e CO				6	3			6	3						6	6

(1, 2 and 3 are correlation levels with weightings as Slight (Low), Moderate(Medium) and Substantial (High) respectively.)

PY3402 FLUID MECHANICS

L T P C 3 0 0 3

OBJECTIVES:

- > To provide the basic fundamental knowledge about the flow properties of different types of fluids and its momentum balance.
- To provide the knowledge about the various transporting and flow measurement and fluid machineries.

UNIT I FUNDAMENTAL CONCEPTS

6

Methods of analysis and description - fluid as a continuum - Velocity and stress field - Newtonian and non-Newtonian fluids - Classification of fluid motion

UNIT II FLUID STATICS

9

Fluid statics – basic equation - equilibrium of fluid element – pressure variation in a static fluid - application to manometry – Differential analysis of fluid motion – continuity, equation of motions, Bernoulli equation and Navier- Stokes equation.

UNIT III DIMENSIONAL ANALYSIS

9

The principle of dimensional homogeneity – dimensional analysis, Rayleigh method and the Pitheorem - non-dimensional action of the basic equations - similitude - relationship between dimensional analysis and similitude

UNIT IV FLOW IN PIPES

12

Reynolds number regimes, internal flow - flow through pipes - pressure drop under laminar and turbulent flow conditions - major and minor losses; Line sizing; External flows - boundary layer concepts, boundary layer thickness under laminar and turbulent flow conditions- Flow over a sphere - friction and pressure drag - flow through fixed and fluidized beds.

UNIT V FLOW MEASUREMENT

a

Flow measurement - Constant and variable head meters; Velocity measurement techniques; Types, characteristics and sizing of valves; Classification, performance characteristics and sizing of pumps.

TOTAL: 45 PERIODS

COURSE OUTCOMES

On completion of the course, the students would be able to

- 1. Understand the fluid properties, apply the knowledge and equipments to determine the pressure by different techniques.
- 2. Ability to solve and analyze the mathematical model associated with physical fluid-flow system and its applications.
- 3. Describe the different flow pattern in various fluid ducts like pipes and fittings
- 4. Understand the fluid flow properties through solids and its application.
- 5. Know the various transporting and metering devices of fluid flow in bulk pharmaceutical manufacturing and in chemical process.
- 6. Understand the interrelationships between different fluid flow properties and become familiar with the graphs to utilize these properties during various manufacturing processes.

TEXT BOOKS:

- 1. Noel de Nevers, "Fluid Mechanics for Chemical Engineers ", Second Edition, McGraw-Hill, (1991).
- 2. Munson, B. R., Young, D.F., Okiishi, T.H. "Fundamentals of Fluid Mechanics", 5th Edition", John Wiley, 2006

REFERENCES:

- 1. White, F.M., "Fluid Mechanics", IV Edition, McGraw-Hill Inc., 1999.
- 2. James O Wilkes and Stacy G Bike, "Fluid Mechanics for Chemical Engineers' Prentice Hall PTR (International series in Chemical Engineering) (1999)
- 3. McCabe W.L, Smith, J C and Harriot. P "Unit operations in Chemical Engineering", McGraw Hill, VII Edition, 2005

Course articulation matrix

			F	Progra	mme	Outco	mes(l	PO)							me outco	mes
Course	РО	РО	РО	PS	PS	PS	PS									
outcom	1	2	3	12	01	O2	0	0								
е							3	4								
CO1	3			2		3										
CO2		3			3					2				3		2
CO3	3			3									3			
CO4		3	3				1								3	
CO5	3	3		3	2		2		1				3			2
CO6		3	2	2	2				3			1	3		2	2
Average CO	3	3	2.5	2.7 5	2.3		1.5		1	2		1.5	3	3	2.5	2

PY3403

CELL AND MOLECULAR BIOLOGY

L T P C 3 0 0 3

OBJECTIVES

The course aims to.

- Enable students understand the structure and function of the prokaryotic and eukaryotic cell with its organelles.
- Expose the concepts on the genetic information in the eukaryotic cell and its regulation.
- Provide knowledge on the application of recombinant DNA technology in biotechnological research.
- Illustrate creative use of modern tools and techniques for sequencing and amplification of DNA.
- Develop students in strategizing research methodologies employing genome analysis.

UNIT I CELL STRUCTURE AND FUNCTIONS OF THE ORGANELLES

9

Prokaryotic, Eukaryotic cells, Sub-cellular organelles, membrane systems and functions Differences and similarities between prokaryotic and eukaryotic cells. Cytoskeletal proteins. Extra cellular matrix, cell-cell junctions, Cell division: mitosis, Extra- and intracellular signal transduction

UNIT II MOLECULAR GENETICS

10

Introduction to nucleic acids, Structure and function of DNA, DNA replication, Telomere replication in eukaryotes. Mutagens, DNA mutations and various types of repair mechanisms. Structure and function of mRNA, rRNA and tRNA. RNA synthesis: Initiation, elongation and termination; Elucidation of genetic code, Codon degeneracy, Wobble hypothesis, Steps in translation: Initiation, Elongation and termination of protein synthesis. Inhibitors of protein synthesis. Posttranslational modifications and its importance. Organization of genes in prokaryotic and eukaryotic chromosomes.

UNIT III RECOMBINANT DNA TECHNOLOGY

10

Manipulation of DNA – Restriction and Modification enzymes. Characteristics of cloning and expression vectors based on plasmid and bacteriophage, Vectors for yeast, insect and mammalian systems, Prokaryotic and eukaryotic expression host systems, Introduction of recombinant DNA into host: Insulin, Interferons, Erythropoietin, DNA libraries: Construction of genomic and cDNA libraries.

UNIT IV SEQUENCING AND AMPLIFICATION OF DNA

8

Amplification of DNA; Types of PCR, Real-time PCR/qPCR – SYBR green assay, Taqman assay, Site directed mutagenesis. Maxam Gilbert's and Sanger Coulson's and automated methods of DNA sequencing, Next generation sequencing technologies, Genetic maps and Physical maps.

UNIT V GENOME ANALYSIS AND GENOMICS

8

Gene therapy and Transgenic technology, Introduction to Functional genomics, Microarrays, Serial Analysis of Gene expression (SAGE), Web resources for Genomics, Regulation of Eukaryotic Gene Expression by Small RNAs (RNA Interference, RNAi).

TOTAL 45 PERIODS

COURSE OUTCOMES:

After completion of the course the student will be able to

- 1. Acquire knowledge on the structure and functions of prokaryotic and eukaryotic cells.
- 2. Illustrate an overview of nucleic acids and the central dogma of life and its significance
- 3. Employ the knowledge of DNA manipulation techniques in the production of commercially important recombinant proteins.
- 4. Understand the concepts of PCR techniques and genome sequencing techniques in biotechnological applications.
- 5. Apply the knowledge of genome analysis and genomics in disease diagnostics and therapy.
- 6. Integrate knowledge of molecular biology principles for understanding of various disorders and genetic engineering principles for its diagnosis and therapy.

TEXT BOOKS:

- 1. David Friedfeld, "Molecular Biology." Narosa Publications, 4th edition, 2008.
- 2. Primrose S B and R. Twyman "Principles of Gene Manipulation & Genomic Blackwell Science Publications, 7th edition, 2006.
- 3. Principles of Genome Analysis and Genomics by S.B. Primrose and R.M. Twyman, Third Edition (Blackwell Publishing), 2003.

REFERENCES:

- 1. Tropp, Burton. "Molecular Biology: Genes to Proteins", 4th Edition. Jones and Bartlett, 2011.
- 2. David P Clark, Nanette J Pazdernik, Michelle R. McGehee." Molecular Biology", 3rd edition, Elsevier science, 2018.
- 3. Genomes 4 by T.A.Brown, fourth Edition (Garland Science Publishing), 2018.

Course articulation matrix

			PRO	OGR <i>A</i>	MME	OUT	СОМ	ES (F	PO)	I K N	0.14	/I FI		ROGR SPEC	IFIC	
Cours	Р	Р	Р	Р	Р	Р	Р	PO	РО	PS	PS	PS	PS			
е	01	02	O3	04	O5	O6	07	08	11	12	01	02	0	0		
outco															3	4
me																
CO1	3	1	2	1	-	-	1	-	-	-	-	-	1	-	1	-
CO2	3	1	2	1	-	-	1	-	-	-	-	-	1	-	1	-
CO3	3	3	3	3	2	-	2	1	-	-	-	-	3	-	3	2
CO4	3	3	3	2	2	-	2	-	-	-	-	-	-	-	-	2
CO5	3	3	3	3	2	-	2	-	-	-	-	1	-	-	1	2
CO6	3	3	2	2	-	-	2	-	-	-	-	2	-	-	-	2
Avera ge CO	3	2.3	2.5	2	2	-	1.6	1	-	-	-	1.5	1.6	-	1.5	2

PY3404 OBJECTIVES:

PHYSICAL PHARMACEUTICS

L T P C 3 0 0 3

- To impart knowledge on fundamental principles and concepts involved in pharmaceutical powders, liquid flow and dispersions
- To provide the knowledge about kinetics and drug stability

UNIT I MICROMERITICS AND POWDER RHEOLOGY

C

Particle size and distribution, particle number, methods for determining particle volume, optical microscopy, sieving, sedimentation, Dynamic light scattering (DLS) technique, measurement of particle shape, specific surface, methods for determining surface area, permeability, adsorption, derived properties of powders, porosity, packing arrangement, densities, bulkiness and flow properties.

UNIT II SURFACE AND INTERFACIAL PHENOMENON

9

Liquid interface, surface and interfacial tension, surface free energy, measurement of surface and interfacial tensions, free energy, spreading coefficient, adsorption at liquid interfaces, surface active agents, HLB classification, solubilization, detergency, adsorption at solid interface, solid gas and solid-liquid interface, complex films, electrical properties of interface.

UNIT III VISCOSITY AND RHEOLOGY

9

Newtonian system, Law of flow, kinematic viscosity, effect of temperature on viscosity, non-Newtonian systems, plastic, pseudoplastic, dilatant, thixotropy, thixotropy in formulation, determination of viscosity: capillary, falling ball, rotational viscometers

UNIT IV DISPERSION SYSTEMS

9

Colloidal dispersions: Definition, types, properties of colloids, protective colloids, applications of colloids in pharmacy. Suspensions and Emulsions: Interfacial properties of suspended particles, settling in suspension, theory of sedimentation, effect of Brownian movement, sedimentation of flocculated particles, sedimentation parameters, wetting of particles, controlled flocculation, flocculation in structured vehicle, rheological considerations, emulsions; types, theories, physical stability.

UNIT V KINETICS AND DRUG STABILITY

9

General considerations and concepts of drug reaction kinetics; zero order, first order and pseudo first order, half-life determination, Influence of temperature, light, catalytic species, solvent and other factors, Stabilization of drugs, Accelerated stability study, expiration dating.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On completion of the course the students will able to

CO1 Explain the methods used for determining particle size, particle volume and surface area along with the derived properties of powders

CO2 Differentiate the surface and interfacial phenomenon,

CO3 Distinguish between Newtonian and non-Newtonian system and to identify methods for determining viscosity.

CO4 Describe the types and properties of colloidal dispersions, suspensions and emulsions along with its applications

CO5 Understand drug reaction kinetics, stabilization of drugs and its accelerated stability testing **CO6** Apply the knowledge of physical properties of powders, liquids, colloidal and coarse dispersions in the design of pharmaceutical dosage forms

TEXT BOOKS:

- 1. Manavalan, R. and Ramasamy. C. "Physical Pharmaceutics" 2nd Ed., Vignesh Publishers, 2015.
- 2. C.V.S. Subrahmanyam, Text book of physical pharmaceutics, 3rdEdn., Vallabhprakashan, 2015.

3. Hadkar. U. B., Physical Pharmacy, NiraliPrakashan; 12th edition, 2017.

REFERENCES:

- 1. <u>Alfred N. Martin, Patrick J. Sinko,</u> Martin's Physical Pharmacy and Pharmaceutical Sciences: Physical Chemical and Biopharmaceutical Principles in the Pharmaceutical Sciences, sixth edition, Lippincott Williams & Wilkins, 2011.
- 2. David B. Troy, Paul Beringer, Remington: The science and practice of pharmacy, 21stEdition,Lippincott Williams and Wilkins, 2006
- 3. Humphrey Moynihan and Abinacrean "Physicochemical Basis of Pharmaceuticals" Oxford University Press, 2009.

Course articulation matrix

Cours		<u>u.u</u>	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										В	ROGR	A NA NA	_
e outco				PRO	GRAI	ММЕ	OUT	COME	ES (P	0)				SPEC COME	IFIC	
me	P 01	P 02	P O3	P 04	PS O1	PS O2	PS O	PS O								
										3	4					
CO1	3	1				1	1		V			1	2		1	1
CO2	3	1		1			3,77					1	1		3	1
CO3	3	1		1		1					47	1	1		3	1
CO4	3				1.37			1	Ι,		1		2		2	1
CO5	3	1			7/		1				3.	1	3		2	
CO6	3	1			1				7			1	3		3	2
Avera ge CO	3	1	-	1	1	1	1	1	-	-	1	1	6	-	2.3	1

PY3405

PHARMACEUTICAL ANALYSIS

L T P C 3 0 0 3

OBJECTIVE:

• To facilitate students to acquire knowledge about the principles and applications of pharmaceutical analysis.

UNIT I PROCESS ANALYTICAL TECHNOLOGY

Ç

On-line PAT Applications of Spectroscopy in the Pharmaceutical Industry: Reaction Monitoring - Crystallization - API Drying - Nanomilling - Hot-melt Extrusion - Granulation - Wet granulation - Roller compaction - Powder Blending - Lubrication - Powder flow - Compression - Coating - Biologics - Fermentation - Freeze-drying - Cleaning Validation.

UNIT II SAMPLE PREPARATION AND SPECIFIC METHODS

ć

Strategies of sample preparation – liquid – liquid extraction, solid-liquid extraction – solid phase extraction techniques – radiometric analysis – Analysis of biological compounds – analysis of water.

UNIT III PHYSICAL ANALYTICAL METHODS

9

Solubility determination – Molecular weight determination – viscosity determination – Surface tension determination – Particle size analysis – X-ray diffraction – Polarimetery – refractometry.

UNIT IV CHEMICAL ANALYTICAL METHODS

9

Appearance, absorbance, pH, related substances, residual solvents, foreign anions, sulfated ash, elemental impurities, loss on drying, moisture and water, oxidizing substances, acid value, hydroxyl value, iodine value, peroxide value, saponification value, unsaponifiable matter – Functional group analysis

UNIT V CONTROL OF THE QUALITY OF ANALYTICAL METHODS

Control of errors in analysis – calibration methods - Accuracy and precision – validation of analytical procedures – SOPs – compound random errors – reporting of results – terms used in the control of analytical procedures – calculations in pharmaceutical analysis: percentage, dilutions, preparation of standard stock solutions, parts per million calculations – normality – molarity – molarity – analytical standards – fundamentals of statistical analysis in pharmaceutical analysis.

SELF STUDY TOPICS (NOT FOR EXAMS)

Different types of biological analysis of pharmaceutical substances and dosage forms.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of the course, the students would be able to

- 1. highlight the sources of impurities and methods to determine the impurities in inorganic drugs and pharmaceuticals.
- 2. demonstrate the skills on various types of extraction techniques
- 3. develop skills on range of physical analytical methods
- 4. determine the chemical properties of pharmaceutical compound
- 5. control the errors in the analysis of drug sample
- 6. illustrate the methods used for quality control of drug samples.

TEXT BOOKS

- 1. Pharmaceutical Analysis P. D. Chaithanya Sudha, Pearson, 2013.
- 2. Pharmaceutical Drug Analysis, Ashutosh Kar. New Age international Pvt Ltd. 2005.
- 3. Siddiqui, Anees A. "Pharmaceutical Analysis". Vol.1&II, CBS,2006
- 4. A.H. Beckett & J. B. Stenlake, "Practical Pharmaceutical Chemistry", Part II, 4th Edition, Bloomsbury Academic, 2001.

REFERENCE BOOKS

- 1. Pharmaceutical Analysis A Textbook for Pharmacy Students and Pharmaceutical Chemists. Third Edition David G. Watson. Churchil Livingstone Elsevier. 2012.
- 2. Pharmaceutical Analysis for Small Molecules, First Edition. Edited by Behnam Davani. © 2017 John Wiley & Sons, Inc. Published 2017 by John Wiley & Sons, Inc.
- 3. Mendham J, "Vogel's Text Book of Quantitative Chemical Analysis", 6th Edition, Pearson Education 2009.
- 4. Process Analytical Technology: Spectroscopic Tools and Implementation Strategies for the Chemical and Pharmaceutical Industries, Second Edition Edited by Katherine A. Bakeev © 2010 John Wiley & Sons, Ltd. ISBN: 978-0-470-72207-7.
- 5. Introduction to Pharmaceutical Analytical Chemistry, Stig Pedersen-Bjergaard, BenteGammelgaard, Trine Grønhaug Halvorsen, Second Edition 2019, Wiley.

Course Articulation Matrix

Course			F	rogr	amr	neO	utco	mes	(PO)				Prog	gramn	ne	
Outcome														cific		
														comes		
	PO1	PO2	PO3	PO4	PO5	PO12	PSO1	PSO ₂	PSO	PSO						
									3	4						
CO1	3	3	2		3	2	3	-	2							
CO2	3	3	2		3	2	3	1	2							
CO3	3	3	2		3	2	2				1	2	3	1	2	
CO4	3	3	2		3	2	2				1	2	3	1	2	
CO5	3	1	1		3	2	2				1	2	3	1	2	
CO6	3	3	3		3	2	2				1	2	3	1	2	
AVERAGE	3	2.7	2	-	3	2	2	-	-	-	1	2	3	1	2	-
CO																

GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY

OBJECTIVES:

- To introduce the basic concepts of environment, ecosystems and biodiversity and emphasize on the biodiversity of India and its conservation.
- To impart knowledge on the causes, effects and control or prevention measures of environmental pollution and natural disasters.
- To facilitate the understanding of global and Indian scenario of renewable and nonrenewable resources, causes of their degradation and measures to preserve them.
- To familiarize the concept of sustainable development goals and appreciate the interdependence of economic and social aspects of sustainability, recognize and analyze climate changes, concept of carbon credit and the challenges of environmental management.
- To inculcate and embrace sustainability practices and develop a broader understanding on green materials, energy cycles and analyze the role of sustainable urbanization.

UNIT I ENVIRONMENT AND BIODIVERSITY

6

Definition, scope and importance of environment – need for public awareness. Eco-system and Energy flow– ecological succession. Types of biodiversity: genetic, species and ecosystem diversity– values of biodiversity, India as a mega-diversity nation – hot-spots of biodiversity – threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts – endangered and endemic species of India – conservation of biodiversity: In-situ and ex-situ.

UNIT II ENVIRONMENTAL POLLUTION

6

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

UNIT III RENEWABLE SOURCES OF ENERGY.

6

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of- Hydrogen energy, Ocean energy resources, Tidal energy conversion. Concept, origin and power plants of geothermal energy.

UNIT IV SUSTAINABILITY AND MANAGEMENT

6

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

UNIT V SUSTAINABILITY PRACTICES

6

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cyclescarbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization-Socioeconomical and technological change.

TOTAL:30 PERIODS

OUTCOMES:

- To recognize and understand the functions of environment, ecosystems and biodiversity and their conservation.
- To identify the causes, effects of environmental pollution and natural disasters and contribute to the preventive measures in the society.
- To identify and apply the understanding of renewable and non-renewable resources and contribute to the sustainable measures to preserve them for future generations.
- To recognize the different goals of sustainable development and apply them for suitable technological advancement and societal development.

• To demonstrate the knowledge of sustainability practices and identify green materials, energy cycles and the role of sustainable urbanization.

TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers ,2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 5. Bradley. A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

REFERENCE BOOKS:

- 1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38.
- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.
- 5. ErachBharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

CO-PO & PSO MAPPING

CO			Р	O									PS	SO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1			-	2	3	-	-		- T	2	j -	-	-
2	3	2	- 44	-		3	3	-		-	-	2	-	-	-
3	3	-	1	-	-	2	2	-		-	1	2	-	-	-
4	3	2	1	1	-	2	2	-	-	7	-	2	-	-	-
5	3	2	1	-	-	2	2	-	-	-	-	1	-	-	-
Avg.	2.8	1.8	100	n1r	00.0	2.2	2.4	- 17	/ 11 /	1111	FBI	1.8	-	-	-

1-low, 2-medium, 3-high, '-"- no correlation

PY3411 PHARMACEUTICAL CHEMISTRY LABORATORY

L T P C 0 0 3 1.5

OBJECTIVES:

- To provide students with the practical laboratory skills of pharmaceutical chemistry
- To demonstrate the effect of the different synthetic methodology.
- To clarify theoretical concepts of chemical synthesis of drug molecules.

LIST OF EXPERIMENTS

 To determine the strength of a given unknown solution of HCl by titrating it against with the help of a known solution of NaOH using

- phenolphthalein indicator.
- 2. To determine the strength of a given unknown solution of NaOH by titrating it against with the help of a known solution of HCl using methyl orange indicator.
- 3. To prepare and standardize 200 ml of 0.1 M silver nitrate solution.
- 4. Determination of physical constants: melting point, boiling point, viscosity and pKa.
- 5. Determination of partition coefficient of any medicinal compound by shake flask method.
- 6. Preparation and identification tests of the following official (IP) compounds: Magnesium sulphate, Calcium Carbonate, Ferrous sulphate, Boric acid
- 7. Determination of impurities by limit test
- 8. Synthesis of compounds by hydrolysis reaction: Salicylic acid from Alkyl Benzoate.
- 9. Synthesis of compounds by oxidation reaction: Benzoic acid from Benzyl chloride.
- 10. Synthesis of compounds involving Electrophilic substitution reaction:

Benzoylation: Benzanilide, Phenyl benzoate, 2-Naphthyl benzoate

Acetylation: Aspirin

Nitration: Picric acid, p-nitro aniline, m - dinitro benzene

Halogenaion: p-bromo acetanilide

Haloform: Iodoform

11. Synthesis of compounds by naming reaction: 7- hydroxy -4- methyl coumarin (Pechmann reaction), 1- phenyl azo-2-napthol (Diazotization and Coupling reaction)

12. Synthesis of major industrial compounds: Paracetamol from p-aminophenol, Benzocaine from p-nitro benzoic acid

TOTAL: 45PERIODS

COURSE OUTCOMES:

The students will be able to

- 1. Apply safe laboratory practices in the preparation of reagents, handling and storage of chemicals.
- 2. Identify/confirm the unknown organic compounds by melting point determination, pKa, boiling point, Viscosity etc.
- 3. Carry out quality control tests for fine chemicals and bulk drugs.
- 4. Implement the knowledge of chemistry in designing the synthetic scheme of organic compounds.
- 5. Demonstrate feasible synthesis of some important class of drugs using chemical reactions.
- 6. Develop the reaction mechanism and orientation of chemical bonds in the synthesis of major industrial compounds.

REFERENCES:

- K.Yogananda Reddy, Dr.K.N. Jayaveera&Dr.S.Subramanyam, Practical Medicinal Chemistry, S.Chan Publishing, 2013
- 2. Vogel's Textbook of Practical Organic Chemistry, 5th edition, Pearson Publisher, 2003.
- 3. Mann & Saunders, Practical Organic Chemistry, 4th edition, Pearson Publisher, 2009.
- 4. Chatwal G.R, "Pharmaceutical chemistry inorganic" Himalaya publishing house, Ed5th, 2010, pp 127-128.
- 5. N.M. Raghavendra &Sayan Dutta Gupta, Laboratory manual of Pharmaceutical Organic Chemistry- I, Vallabh Prakashan, 1st edition. 2013.

Course Articulation Matrix

Cours					Prog	gramr	ne Oı	utcon	пе				Prog	ramme		cific
outco me	P 01	P 02	P 03	P 04	P O5	P 06	P 07	P 08	P 09	PO 10	PO 11	PO 12	PS O1	PS O2	PS O	PS O
															3	4
CO1	3	2	3	3		2	2					2		2		2
CO2	3	1	2	2			1					2	2	2	3	3
CO3	3	1	2	2			1					2	3		3	2
CO4	3	1	2	2			1					2	3	3	2	
CO5	3	1	2	2			1					2			2	
CO6	3	3	3	3		2	2					2	3	2	2	2
Avera ge CO	3	1.5	2.3	2.3		2	1	1	1			2	2.8	2.3	2.4	2.3

PY3412 PHYSICAL PHARMACEUTICS LABORATORY OBJECTIVES:

L T P C 0 0 3 1.5

- To practice the determination of fundamental properties of dosage forms of powders and dispersions.
- To study the kinetics and stability aspects of pharmaceuticals.

LIST OF EXPERIMENTS:

- 1. Determination of particle size, particle size distribution using various methods of particle size analysis.
- 2. Determination of surface area of powders.
- 3. Determination of derived properties of powders like density, porosity, compressibility, angle of repose, etc.
- 4. Determination of effect of glidant on angle of repose of powder
- 5. Determination of surface/interfacial tension, HLB value
- 6. Determination of critical micellar concentration (CMC) of surfactants.
- 7. Study of rheological properties of various types of systems using different viscometers.
- 8. Study of different types of colloids and their properties.
- 9. Preparation of various types of suspensions and determination of their sedimentation parameters.
- 10. Preparation and stability studies of emulsions.
- 11. Determination of half-life, rate constant and order of reaction.
- 12. Preparation of pharmaceutical buffers and determination of buffer capacity.
- 13. Determination of shelf life of a product based on Arrhenius principle

TOTAL:45 PERIODS

COURSE OUTCOMES:

On completion of the course the students will able to

CO1Characterize and evaluate the properties of powders by suitable methods

CO2Plan and carryout the determination of interfacial property of liquids. .

CO3Plan and carryout the determination of viscosity.

CO4Plan and carryout the physical stability study of suspension and emulsion dosage forms...

CO5Plan and carryout the, preparation of buffer and to determine the buffer capacity and isotonicity of solutions

CO6Calculate the rate constant and order of reactions.

TEXT BOOKS:

- 1. C.V.S. Subrahmanyam, Physical pharmaceutics-I, 1st Edn., Vallabhprakashan, 2019.
- 2. C.V.S. Subrahmanyam, Physical pharmaceutics II, 1st Edn., Vallabhprakashan, 2019.
- 3. Manavalan, R. and Ramasamy. C. "Physical Pharmaceutics" 2nd Ed., Vignesh Publishers, 2015.

REFERENCES:

- 1. Eugene L. Parrott, WitoldSaski, Experimental Pharmaceutics, 4thedn., Burgess Pub. Co., 1977.
- 2. C.V.S Subrahmanyam&J.ThimmaSetty, Laboratory Manual of Physical Pharmaceutics, 2nd Ed., Vallabh Prakashan, 2014.
- 3. Dr. U. B. Hadkar, Practical Physical Pharmacy & Physical Pharmaceutics, NiraliPrakashan, Pune, 2008.

Course articulation matrix

Cours				L	Prog	ramr	ne Oı	utcon	ne					Progra		
е					-								Spe	ecific o	utco	me
outcm	Р	Р	Р	Р	Р	Р	Р	Р	Ρ	PO	PO	PO	PS	PS	PS	PS
е	01	O2	O3	04	O5	06	07	08	O9	10	11	12	01	O2	0	0
statem						1		,							3	4
ent													1			
CO1	3	3		2	7				1	1		1	3	1	2	
CO2	3	3		2	γ,	1			1	1	4	1	3	1	2	
CO3	3	3		2					1	1		1	3	1	2	
CO4	3	3		2	7		4		1	1		1	3	1	2	
CO5	3	3		2					1	1		1	3	1	2	
CO6	3	3		2					1	1		1	3	1	2	
Averag e CO	3	3		2					1	1		1	3	1	2	

PY3513

INDUSTRIAL TRAINING / INTERNSHIP I*

LTPC 0002

OBJECTIVES:

To enable the students to

- Get connected with industry/ laboratory/research institute
- Get practical knowledge on production process in the industry and develop skills to solve related problems
- Develop skills to carry out research in the research institutes/laboratories

The students individually undergo training in reputed firms/ research institutes / laboratories for the specified duration. After the completion of training, a detailed report should be submitted within ten days from the commencement of next semester. The students will be evaluated as per the Regulations.

No. of. Weeks: 04

OUTCOMES:

On completion of the course, the student will know about

CO1: Plant layout, machinery, organizational structure and production processes in the firm or research facilities in the laboratory/research institute

CO2: Analysis of industrial / research problems and their solutions

CO3: Documenting of material specifications, machine and process parameters, testing parameters and results

CO4: Preparing of Technical report and presentation

PY3501

SEMESTER V PHARMACEUTICAL DOSAGE FORMS

L T P C 3 0 0 3

OBJECTIVES

 To acquaint the concepts of pharmaceutical dosage forms in respect of their formulation and development

UNIT I POWDERS AND GRANULES

9

Advantages and disadvantages of powdered and granulated products, Mixing and dividing of powders, Problems in manufacturing powders, Reasons for granulation, Granulation mechanisms, Granulation methods, Pharmaceutical granulation equipments.

UNIT II TABLETS AND COATING

9

Types of tablets, Formulation, Manufacturing of tablets, Tableting problems, Evaluation of Tablets, Tablet coating, Film coating, Sugar Coating, Enteric coating, Evaluation of coated tablets, Applications, Large Scale Manufacture.

UNIT III CAPSULES

9

Classification, Gelatin and Non-gelatin Capsules – Hard gelatin capsules, Composition and size, Materials and methods for production of hard gelatin capsule, Formulation and filling of capsules, Soft gelatin capsules, Rationale, Manufacturing and formulation of soft gelatin capsules, Evaluation of capsules.

UNIT IV SEMISOLID FORMULATIONS

9

Ointments - materials for preparation - manufacturing method. Compendial Requirements for ointments - characterization, applications - pastes - gels - creams - suppositories formulation and characterization.

UNIT V ADVANCES IN TABLETING TECHNIQUES

9

TOTAL: 45 PERIODS

Buccal Tablets – Chewable Tablets — Inlay tablets, Layer tablets, Mouth dissolving tablet, Tablets in tablets – Compression coating.

COURSE OUTCOMES:

The student will be able to

- 1. comprehend the factors influencing the development of various solid dosage forms.
- 2. recognize the formulation concepts and evaluate different dosage forms to meet out the compendial requirements.
- 3. execute and involve in the manufacturing process for the tablet and capsule dosage forms.
- 4. design microencapsulation techniques in the multiparticulate dosage forms
- 5. apprehend the advances in solid dosage forms
- 6. apply the technology of solid dosage forms in pharmaceutical industries

TEXT BOOKS:

- 1. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, 8th Edition, CBS Publishers, New Delhi, 2008.
- 2. Aulton, M.E., "Pharmaceutics The Science of Dosage form Design", 2nd Edition, ELBS Publications, 2002.
- 3. Cooper and Gunn's "Dispensing for Pharmaceutical Students", Edited by S J Carter, CBS Publishers, New Delhi, 2008.

REFERENCES:

- 1. Gennaro, A.R., "Remington: The Science and Practice of Pharmacy", Vol. I and II, 21st Edition, Lippincott Williams and Willkins, 2005.
- 2. Banker, G.S. and Rhodes, C.T., "Modern Pharmaceutics", 4th Edition, Informa Health Care, 2002.

3. Liberman, H.A., Lachman, L. and Schwartz, J.B., "Pharmaceutical Dosage Form: Tablets", 2nd Edition, Volume II, Mercel Dekker, 1999.

Course Articulation Matrix

Course Outcome			F	Progra	amme	Out	com	es (I	PO)					rogra Spec Outco (PS	ific mes	
	РО	РО	PO	PO4	PO5	PO	PO	PO	РО	PO1	PO1	PO1	PSO	PSO	PS	PSO
	1	2	3			2	1	2	O 3	4						
CO1	3	3	3										3	2		
CO2	3	3												3		
CO3		3		3	3		2								2	3
CO4			3	2	2			2								2
CO5	3				2			2					3			
CO6	3	3	3	2	2			2		7	1		3	2	2	
AVERAG E CO	3	3	3	2.	2. 2	-	2	2	-	4.	(1)		3	2.3	2	2. 5

^{(1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively)

PY3502

UNIT OPERATIONS IN PHARMACEUTICAL INDUSTRIES

LTPC

OBJECTIVES:

- To provide the basics of unit operations.
- To recognize various unit operations such as size reduction, separation, filtration, centrifugation, crystallization, and mixing.

UNIT I INTRODUCTION

12

Introduction to Unit Operations and Pharmaceutical industry- Overview of composition, resistance, properties and applications of the materials of construction with special reference to stainless steel and glass- Corrosion and its Prevention.

UNIT II SIZE REDUCTION & SEPARATION

12

Properties and characterization of particulate solids - Analytical methods for size determination of powders - Size reduction- Mechanism - equipment - Size separation - mechanism - equipment

UNIT III CRYSTALLIZATION

12

Characters of crystals like purity, size, shape, geometry, habit, forms, size and its factors- Solubility curves- Super saturation theory and its limitations- nucleation mechanism and crystal growth-crystallisers- Swenson Walker crystalliser, etc., - Caking of crystals and its prevention.

UNIT IV FILTRATION AND CENTRIFUGATION

12

Theory of filtration, Filter aids, Filter media- Factors affecting filtration- Industrial filters including Filter press, Rotary filter, Edge filter, etc.,- Principles of centrifugation- industrial centrifugal filters - sedimentation centrifuges.

UNIT V MIXING 12

Mixing of powdered materials – Mechanism of random mixing and interactive mixing. Factors affecting the mixing process - Types of mixers - Characteristics and operation of Liquid, Semisolid and Solid Mixers.

COURSE OUTCOMES:

The student will be able to

1. Elucidate the various materials for pharmaceutical plant construction and industrial hazards

TOTAL: 60 PERIODS

- 2. Recognize the properties of particulate matter and size reduction and separation equipment.
- 3. Describe the properties of crystals and working of crystallisers
- 4. Appreciate the theory of filtration and centrifugation and the equipment used for these unit operations
- 5. Define the principle of mixing and the working of mixers in pharma industries.
- 6. Recognize the applications of principles of unit operations in industry

TEXT BOOKS:

- 1. W.L. McCabe, J.C. Smith, P . Harriott, "Unit operations of Chemical Engineering", 7th ed., McGraw-Hill, 2017
- 2. Girish K.Jani, "Pharmaceutical Engineering I, Unit Operation I" B.S.ShahPrakashan, India, 2006.
- 3. Cooper and Gunn's Tutorial Pharmacy, Edited by S J Carter, CBS Publishers, New Delhi, 2005

REFERENCES:

- 1. Coulson, J.M. and et al. "Coulson & Richardson's Chemical Engineering", 4th Edition, Vol.6, Elsevier Butterworth Heinemann, MA, 2005
- 2. Badger, W.L and Banchero, J.T "Introduction to Chemical Engineering" Tata McGraw Hill, 2002
- 3. K. Sambamurthy, Pharmaceutical Engineering New Age International (P) Ltd., Publishers, New Delhi, 2003

Course Articulation Matrix

				Pro	gram	me O	utcor	nes (PO)	1		/		rammo omes (ific
Cours	PO	PO	РО	РО	РО	РО	РО	РО	PS	PS	PS	PS				
e out	1	2	3	4	5	6	11	12	O1	O2	O3	O4				
come			DΛ	C D	K		En	CE								
CO1	3	3	2		3		2	3	-	2						
CO2	3	3	2		3	2	2				1	2	3	1	2	
CO3	3	3	2		3	2	2				1	2	3	1	2	
CO4	3	3	2		3	2	2				1	2	3	1	2	
CO5	3	1	1		3	2	2				1	2	3	1	2	
CO6	3	3	3		3	2	2				1	2	3	1	2	
AVER AGE CO	3	2.7	2	-	3	2	2	-	-	-	1	2	3	1	2	-

PY3503 PHARMACOLOGY

L T P C 3 0 0 3

OBJECTIVES:

- To provide general pharmacological principles.
- To make understand the pharmacology of different types of drugs acting on various physiological system.

UNIT I INTRODUCTION TO PHARMACOLOGY

9

Drugs, routes of drug administration, factors modifying drug action, tolerance and dependence, Pharmacodynamics and pharmacokinetics, Adverse drug reactions, Drug interactions, Overview of drug discovery and development.

UNIT II DRUGS ACTING ON NERVOUS SYSTEM

9

Pharmacology of parasympathomimetics, parasympatholytics, sympathomimetics, sympatholytics, general anaesthetics, sedatives, hypnotics, antipyretic, analgesic, anti-inflammatory (NSAIDS) and CNS stimulants.

UNIT III DRUGS ACTING ON CARDIOVASCULAR SYSTEM

9

Pharmacology of cardiac glycosides and other drugs for congestive heart failure, antiarrythmatic, antianginal and antihypertensive drugs.

UNIT IV DRUGS ACTING ON GASTROINTESTINAL SYSTEM

9

Antacids, anti-secretory and anti-ulcer drugs, Laxatives and Anti-diarrhoeal drugs, Appetite stimulants and suppressants, Emetics and anti-emetics.

UNIT V CHEMOTHERAPY OF MICROBIAL DISEASES

9

General principles of chemotherapy; Inhibitors of cell wall synthesis- penicillins, Protein synthesis inhibitors – aminoglycosides, chloramphenicol, Chemotherapy of tuberculosis and malaria.

SELF STUDY TOPICS: (NOT FOR EXAMINATIONS) Topics related to toxicology i.e., OECD guidelines for testing acute, sub-acute, and chronic toxicity, genotoxicity, carcinogenicity, teratogenicity and mutagenicity of drugs and chemicals.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

The student will be able to

- 1. Realize the various principles of general pharmacology.
- 2. Comprehend the Mechanism of action of different types of drugs acting on various physiological systems.
- 3. Know the pharmacology of various categories of drugs acting on nervous, cardiovascular and gastrointestinal systems.
- 4. Illustrate the principles of chemotherapy.
- 5. Understand the pharmacology of antimicrobial agents.
- **6.** Able to contribute in the drug discovery, potency evaluation, toxicological screening and drug development.

TEXT BOOKS

- 1. RS Satoskar, Nirmala N Rege, SD Bhandarkar. Pharmacology and Therapeutics. 24th Ed, 2015, Elsevier.
- 2. Tripathi, K.D. Medical Pharmacology. 8th Edition, 2018, Jaypee Brothers Medical Publications.
- 3. Basic Concepts in Pharmacology: What You Need to Know for Each Drug Class, Sixth Edition6th Edition By Janet L. Stringer© 2022.
- 4. Casarett & Doull's Essentials of Toxicology, Fourth Edition4th Edition By Curtis D. Klaassen, John B. Watkins© 2021 | Published: February 2, 2021.

REFERENCE BOOKS

- 1. Goodman and Gilman's The Pharmacological Basis of Therapeutics, 14th Edition14th Edition By Laurence Brunton, Bjorn Knollmann© 2023.
- 2. Rang & Dale's Pharmacology, James Ritter, Rod Flower, Graeme Henderson, Yoon Kong Loke, David MacEwan, Humphrey Rang. 2019.
- 3. Basic & Clinical Pharmacology, 14th Edition, Bertram G. Katzung, Mc Graw Hill Publishers.
- 4. Principles of Pharmacology: The Pathophysiologic Basis of Drug Therapy, David E. Golan MD PhD, 2016, LWW.

Course Articulation Matrix

				Pro	ograr	nme	Outc	omes	(PO))				ramm omes		cific
Cours	Р	Р	Р	Р	Р	Р	Р	Р	Р	РО	РО	РО	PS	PS	PS	PS
е	01	O2	O3	04	O5	O6	07	08	O9	10	11	12	O1	O2	О3	O4
outco					500							5.0				
me																
CO1	2		3		2			2				3	3	2		
CO2	3	3		2		3						2		3	2	
CO3				3	2	3				7.77					3	2
CO4	3	2			2		3		3	7		7	2			
CO5	2		2	7/4	1	1	1				3.7	3	1	2	3	
CO6	3		2		3	1			4		4	4		2		3
AVER AGE CO	2. 1	2. 5	2.	2. 5	2	3	3	2	3	1	Vi.	2.6	2.5	2.2 5	2.6	2.5

PY3511

DOSAGE FORMS LABORATORY

L T P C 0 0 3 1.5

TOTAL: 45 PERIODS

OBJECTIVES

To study, the basic principles in formulating liquid, semisolid, solid and parenteral dosage forms and their evaluations.

LIST OF EXPERIMENTS

- 1. Preparation of solutions
- 2. Preparation ofcreams
- 3. Evaluation of creams
- 4. Preparation of ointments
- 5. Evaluation of ointments
- 6. Preparation of suppositories
- 7. Evaluation of suppositories
- 8. Preformulation studies on preparedgranules
- 9. Manufacture and evaluation of granules wet granulation and dry granulationmethods
- 10. Formulation and evaluation of Effervescent granules
- 11. Preparation oftablets
 - a. Tablets prepared from wet and drygranules
 - b. Tablets prepared by directcompression
- 12. Formulation and filling of hard gelatincapsules
- 13. Preparation and evaluation of parenterals Injections.

COURSE OUTCOMES:

The student will be able to

Acquire knowledge to prepare and evaluate various liquid, semi-solid dosage forms

85

- Acquire knowledge to prepare and evaluate solid dosage forms and parenteral dosage forms
- Experiment and interpret the granule manufacturing process
- Demonstrate the concepts in formulation and evaluation of capsules
- Apply the knowledge to formulate new dosage forms
- Experiment various quality control parameters of pharmaceutical dosage forms

TEXT BOOKS:

- 1. Ansel's Pharmaceutical Dosage Forms and Drug Delivery Systems, Jaypee medical publishers, Ninth edition, 2010.
- 2. Cooper and Gunn's Dispensing for Pharmaceutical Students, Edited by S J Carter, CBS Publishers, New Delhi, 2008.
- 3. Indian Pharmacopoeia, Indian Pharmacopoeia commission, Ghaziabad.2016.

REFERENCES:

- 1. Practical Manual for Pharmaceutical Dosage Forms, Munira M. First Edition, Career Publications, Career Publications, Mumbai. 2019.
- 2. Practical Handbook on Pharmaceutical Dosage forms-I, Jain DK., Dheeraj T. NiraliPrakashan, Pune. 2019.
- 3. Pharmaceutical Dosage Forms: Parenteral Medications, Volume I,KennethE.Avis, Herbert A. Lieberman (Editor), Leon Lachman (Editor) Informa Healthcare, 1993.

Course Articulation Matrix

Course Outcome							utcc				1			rogra Spec Outco (PS	ific mes O)	
	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO	PSO
															3	4
CO1	3				2			Γ.	2				3			
CO2			À		2				2		7/			3		
CO3	3			2												
CO4	3				-							7				
CO5	3	2									1		2			
CO6	3	2		2				10					3			
AVERAGE CO	3	2	ığ	2	2	n <u>i</u> h	Ų	υŅ	2	ıņı	110	. E.D	2.6	3	-	-

PY3512

PHARMACOLOGY LABORATORY

L T P C 0 0 3 1.5

OBJECTIVE:

To instill the knowledge of various pharmacological experiments for better understanding the drug action in various systems.

EXPERIMENTS

- 1. Practical &/ Online demonstration of laboratory animals handling and various routes of drug administration.
- 2. Virtual study of use of anaesthetics in various laboratory animals.
- 3. Virtual demonstration of determination of toxicity LD₅₀.

- 4. To demonstrate the bioassay of Ach using isolated ileum /rectus abdominis muscle preparation using online videos.
- 5. Bioassay of 5-HT using rat fundus strip or Bioassay of oxytocin using rat uterus using simulation software's / online gadgets.
- 6. Computer assisted demonstration of estimation of pA 2 value on isolated tissues.
- 7. Study of alternative methods for drug evaluation.
- 8. Computational identification of biomarker genes for lung cancer/ prostate cancer/ Diabetes etc..
- 9. Insilico ADMET analysis by molinspiration software
- 10. Determination of drug likeness properties using SWISSADME

BASIC READING

- 1. Study of common laboratory animals and handling of lab animals (demonstration).
- 2. CPCSEA guidelines for laboratory animal facility.
- 3. Study of different routes of drug administration.
- 4. Study of commonly used instruments in experimental pharmacology and its uses

TOTAL: 45 PERIODS

Equipments / Infrastructure requirements

- 1. Valid CPCSEA registered airconditioned animal house facility for housing experimental animals and its maintenance furnished as per the CPCSEA norms.
- 2. Computers (Atleast 10 Nos with a network printer) and multiuser software license e.g., Expharm or other equivalent simulation softwares for teaching.
- 3. Pharmacology experiment kit (animal cages, dissection kit, animal feed, bed materials, autoclave, incinerator, dissection table, standard drugs, anesthetic drugs, minor consumables and gadgets, personnel protective equipments,)

COURSE OUTCOMES:

Students would be able to

- 1. Acquire knowledge on handling of Laboratory animals.
- 2. Implement the physiological tests and appreciate the interlinked mechanisms in the maintenance of normal functioning of human body
- 3. Perform basic physiological and pharmacological experiments and to record and interpret the results for its clinical significance.
- 4. Demonstrate laboratory procedures used to examine anatomical structures and evaluate physiological functions of each organ system
- 5. Interpret graphs of anatomical and physiological data.
- 6. Apply the methods to evaluate the potency of drugs, toxicity of drugs in animal models.

REFERENCES

1. Dinesh Badya, Practical Manual of Pharmacology for Medical Students, 2018.

2. Pramila V. Yadav, Vaishali Thakre, PradnyaDeolekar Practical Pharmacology, 2018.

				Pro	ograr	nme	Outco	omes	(PO)					ramm omes	e spec (PSO)	
Cour	Р	Р	Р	Р	Р	Р	Р	Р	Р	РО	РО	РО	PS	PS	PS	PS
se	01	02	O3	O4	O5	O6	07	11	12	O1	O2	О3	O4			
outco																
me																
CO 1												3	3		2	
CO 2	3	2		3			2							3	2	
CO 3	3			3	3			1							3	
CO 4	3				3		3						2	3		
CO 5	3	2		3	2					2					3	2
CO 6	3		3		3			3					2			3
Avera	3	2	3	3	2.5	-	2.5	2	-	2	_	3	2.3	3	2.5	2.5
ge		_						_		_						

SEMESTER VI

PY3601 HEAT AND MASS TRANSFER OPERATIONS

L T P C 3 1 0 4

OBJECTIVE:

- To recognize the principles and applications of heat transfer
- To understand the principles of mass transfer operations.

UNIT I FUNDAMENTAL CONCEPTS AND CONDUCTIVE HEAT TRANSFER 12

Introduction to transfer processes – heat, mass and momentum – heat transfer process - conductors and insulators - conduction – Fourier's equation – thermal conductivity and thermal resistance - linear heat flow – heat transfer through homogenous wall - Heat flow through cylinders and sphere – Extended surfaces (fins) — solving problems in heat transfer by conduction.

UNIT II HEAT TRANSFER: CONVECTION

12

Newton Rikhman's law – film coefficient of heat transfer - convection – free and forced convection - dimensional analysis and its application – factors affecting the heat transfer coefficient in free and forced convection heat transfer – overall heat transfer coefficient - solving problems in heat transfer by convection.

UNIT III HEAT TRANSFER: RADIATION

12

Radiation heat transfer – concept of black and grey body - monochromatic total emissive power – Kirchoff's law – Planck's law - Stefan-Boltzman's law – heat exchange through non-absorbing media - solving problems in heat transfer by radiation.

UNIT IV MASS TRANSFER DIFFUSION, EXTRACTION AND ABSORPTION

Introduction to Mass transfer - Fick's law for molecular diffusion - molecular diffusion in gases, liquids and solids - Introduction to Absorption- Equilibrium in gas liquid system- Minimum Liquid rate- Height equivalent to theoretical plate. Liquid - liquid extraction - solvent characteristics,

UNIT V DISTILLATION AND ADBSORPTION

12

12

Concept of distillation, Vapour liquid equilibria, Henry's Law, Raoults Law –Volatility- relative volatility. Methods of distillation- Simple or Differential distillation, Rayleigh's equation - Steam distillation. Adsorption - Types of adsorption, nature of adsorbents, adsorption equilibria, adsorption isotherms

TOTAL: 60 PERIODS

COURSE OUTCOMES:

The students will be able to

- 1. Elucidate the theory behind conduction mode of heat transfer and solving problems related to it
- 2. Recognize the theory behind convection mode of heat transfer and solving problems related to it.
- 3. Acquire the basics of radiation mode of heat transfer and its theory and problem solving related to radiation.
- 4. Appreciate the principle behind heat exchangers and its working
- 5. Define the theory of mass transfer.
- 6. Recognize the problems related to heat and mass transfer in pharmaceutical industry

TEXT BOOKS:

- 1. Theodore L. Bergman et. al., Fundamentals of Heat and Mass Transfer , 7th edition, Wiley Publishers, NJ, 2011
- 2. Bellaney, P.L. "Thermal Engineering". Khanna Publishers, New Delhi, 2001
- 3. Coulson, J.M. and et al. "Coulson & Richardson's Chemical Engineering", 4th Edition, Vol.6, Elsevier Butterworth Heinemann, MA, 2005

REFERENCES:

- 1. Don W. Green, Perry's Chemical Engineers' Handbook, Ninth Edition, McGraw-Hill Education. New York, 2019.
- 2. Warren McCabe, W.L., Julian Smith and Peter Harriot "Unit Operations of Chemical Engineering", 7th Edition, McGraw Hill Education, New York, 2017

Course Articulation Matrix

				Pr	ogran	nme O	utcor	nes (PO)						me outco	mes
Course	РО	PO	РО	РО	РО	PO	PS	PS	PS	PS						
outcome	1	2	3	4	5	12	01	02	O3	04						
CO1	3	3	3	2	2	2	-	3	2	-						
CO2	3	3	3	2	2		2					2	-	3	2	1
CO3	3	3	3	2	2		2					2	-	3	2	1
CO4	3	3	3	2	3		2					2	-	3	2	1
CO5	3	1	1	1	2		2	1//				2	-	3	2	1
CO6	3	3	3	2	3		2		5 //			2	-	3	2	1
AVERAG E CO	3	2.7	2.7	1.8	2.3		2	7		7		2	1	3	2	1

PY3602

INSTRUMENTAL TECHNIQUES IN DRUG ANALYSIS

LTPC

OBJECTIVE:

To facilitate students to acquire knowledge about the principles and operations of various modern analytical instruments.

UNIT I UV-VISIBLE SPECTROSCOPY

9

Theory of atomic and molecular spectra, Electronic transitions, Beer and Lambert's law, Derivation and deviations, Chromophores, Auxochromes, Spectral shifts, Solvent effect on absorption spectra. Instrumentation - Sources of radiation, wavelength selectors, sample cells, Detectors-Barrier layer cell, Photo tube, PMT, PDA detectors; Applications in pharmaceuticals.

UNIT II ATOMIC ABSORPTION SPECTROSCOPY

9

Principles, Instrumentation, Operation – single and double beam spectroscopy; sampling technique – Detection limit, Difference between Atomic absorption spectroscopy and Flame spectroscopy; Applications in pharmaceuticals.

UNIT II INFRARED and NMR SPECTROSCOPY

9

Principles of vibrational spectroscopy – Instrumentation and sampling techniques – Applications in pharmaceutical sciences – NMR principles – Instrumentation – Applications in pharmaceuticals.

UNIT IV MASS SPECTROMETRY

9

Basic principles, instrumentation and ionization methods; atmospheric pressure ionization (API), chemical ionization (CI), electron impact ionization (EI), fast atom bombardment (FAB), matrix assisted laser desorption ionization (MALDI), time of flight (TOF); Applications in pharmaceuticals.

UNIT V CHROMATOGRAPHIC METHODS

9

History, origin and classification of chromatography: Column Chromatography: principle, theory, column operations, instrumentation, derivatisation methods and applications; High Performance

Liquid Chromatography: Principle, instrumentation, solvents system, packing materials and applications; Thin Layer Chromatography: Principle, instrumentation, solvents, packing materials and applications in pharmaceuticals.

TOTAL:45PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to,

- 1. Discuss the principle, theory and instrumentation of UV/Visible spectroscopy; Applications in pharmaceuticals.
- 2. Describe the principle, instrumentation and operation of AAS; Difference between AAS and FES; Applications in pharmaceuticals.
- 3. Illustrate the principle and instrumentation of IR and NMR spectroscopy; Applications in pharmaceuticals.
- 4. Discuss the basic principle, instrumentation and ionization methods of Mass spectroscopy; Applications in pharmaceuticals.
- 5. Describe the principle, instrumentation, solvents and packing materials of CC, TLC and HPLC; Applications in pharmaceuticals.
- 6. Apply the theoretical knowledge of instruments, new analytical methods may be developed and validated for the screening of various pharmaceutical agents.

TEXTBOOKS:

- 1. A. H. Beckett & J. B. Stenlake, "Practical Pharmaceutical Chemistry", Part II, 4th Edition, Bloomsbury Academic, 2001.
- 2. Hobert H. Willard, "Instrumental Methods of Analysis", 7th Edition, CBS Publishers & Distributors, 2004.
- 3. B.K. Sharma, "Instrumental Method of Chemical Analysis", Krishna's Education Publishers, 2014.
- 4. P. D. Sethi, "HPTLC: High Performance Thin Layer Chromatography: Quantitative Analysis of Pharmaceutical Formulations", 1st edition, CBS, 2013.

ii.

REFERENCES:

- 1. Robert M. Silverstein, Francis X. Webster, David J. Kiemle, David L. Bryce, "Spectroscopic Identification of Organic Compounds", 8th Edition, Wiley, 2014.
- 2. Mendham J, "Vogel's Text Book of Quantitative Chemical Analysis", 6th Edition, Pearson Education 2009.
- 3. Douglas A. Skoog, F. James Holler, Stanley R. Crouch, "Principles of Instrumental Analysis", 7th Edition, Brooks Cole, 2017.
- 4. William Kemp, "Organic Spectroscopy" W.H. Freeman, New York, 3rd Edition, 2011.

Course Articulation Matrix

Course) G	RE	SS	Prog	ramr	neOı	utco	mes	(PO)	W	LEI) G		Spe utc	amr cific ome SO)	;
Outcome	РО	РО	PO	РО	РО	РО	PS	_ `	PS	PS						
	1	2	3	4	12	01			0 4							
CO1	3		2	2	<u>5</u> 3	6	2	8	9				1	2	1	2
CO2	3		2	2	3		2						1	2	1	2
CO3	3		2	2	3		2						1	2	1	2
CO4	3		2	2	3		2						1	2	1	2
CO5	3		2	2	3		2						1	2	1	2
CO6	3		2	2	3		2						2	3	2	3
Average CO	3		2	2	3		2						1.1	2.1	1.1	2.1

PY3611

HEAT AND MASS TRANSFER OPERATIONS LABORATORY

L T P C 0 0 3 1.5

OBJECTIVE:

- To provide basic understanding of chemical engineering principles and operations
- To train the students to work on different types of Heat transfer equipment.
- To train the students to develop sound working knowledge on different types of mass transfer equipment.

LIST OF EXPERIMENTS

- 1. To determine the Thermal Conductivity of metal rod.
- 2. To determine individual heat transfer film coefficient in forced convection.
- 3. Heat transfer studies in Stefan Boltzmann apparatus.
- 4. To determine overall heat transfer coefficient of double pipe heat exchanger by parallel flow.
- To determine overall heat transfer coefficient of double pipe heat exchanger by counter flow.
- 6. To determine overall heat transfer coefficient of shell and tube heat exchanger.
- 7. Determination of diffusivity of acetone in air
- 8. Determination of mass transfer coefficient for steady state surface evaporation of water at different temperature.
- 9. Conduction of liquid liquid extraction studies
- 10. Conduction of Adsorption studies
- 11. Separation of binary mixture using Simple distillation
- 12. Separation of binary mixture using Steam distillation

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students would be able to

- Determine heat transfer coefficient.
- Apprehend the conduction parameters.
- Determine heat transfer film coefficient.
- Demonstrate the separation of Binary mixtures
- Determine diffusivity and Drying characteristics
- Demonstrate distillation, extraction, diffusivity and drying principles which are having wide applications in various industries.

REFERENCES

- 1. Yunus A. Cengel, "Heat Transfer A Practical Approach", Tata McGraw Hill, 2010
- 2. M.Thirumaleshwar: Fundamentals of Heat and Mass Transfer, "Heat and Mass Transfer", First Edition, Dorling Kindersley, 2009

Course Articulation Matrix

		I I	UU	Pr	ogran	nme O	utcoi	mes (PO)	UTI	la la	001			me outco	mes
Course	РО	РО	PO	РО	РО	РО	PO	PS	PS	PS	PS					
outcome	1	2	3	4	5	11	12	01	02	O3	04					
CO1	3	3	2	2	2			3	2	-	2					
CO2	3	3	2	2	2			3	2	1	2					
CO3	3	3	2	2	2			2					3	2	1	2
CO4	3	3	2	2	3			2					3	2	1	2
CO5	3	1	1	1	2			2					3	2	1	2
CO6	3	3	3	2	3			2					3	2	1	2
AVERAG E CO	3	2.7	2	1.8	2.3			2					3	2	1	2

PY3612

INSTRUMENTAL TECHNIQUES IN DRUG ANALYSIS LABORATORY

L T P C 0 0 3 1.5

TOTAL: 45 PERIODS

OBJECTIVE:

To carry out analytical experiments related to spectroscopic and chromatographic techniques.

LIST OF EXPERIMENTS

- 1. Calibration of volumetric glasswares.
- 2. Establishing standard operating procedure (SOP) and Calibration records for analytical balance, pH meter and UV/Vis spectroscopy.
- 3. Determination of λmax.
- 4. Quantitative analysis by titrimetric methods.
- 5. Effect of change in physio-chemical parameters on absorbance spectrum of a drug molecule.
- 6. Quantitative and qualitative analysis of drug molecule using standard comparison method by UV/Vis spectroscopy.
- Quantitative analysis of drug molecule using calibration graph method by UV/Vis Spectroscopy.
- 8. Quantitative analysis of drug molecule using E1%1cm method by UV/Vis spectroscopy.
- 9. Simultaneous analysis of drug molecules using UV/Vis Spectroscopy.
- 10. Separation and identification of mixtures of drugs by TLC.
- 11. Separation and identification of amino acids by paper chromatography.
- 12. Identification of functional group of a drug molecule by IR spectroscopy.
- 13. Quantitative and qualitative analysis of drug molecule using standard comparison method by HPLC.

COURSE OUTCOMES:

- 1. Discuss the principle, theory and instrumentation of UV/Visible spectroscopy; Applications in pharmaceuticals.
- 2. Describe the principle, instrumentation and operation of AAS; Difference between AAS and FES; Applications in pharmaceuticals.
- 3. Illustrate the principle and instrumentation of IR and NMR spectroscopy; Applications in pharmaceuticals.
- 4. Discuss the basic principle, instrumentation and ionization methods of Mass spectroscopy; Applications in pharmaceuticals.
- 5. Describe the principle, instrumentation, solvents and packing materials of CC, TLC and HPLC; Applications in pharmaceuticals.
- 6. Apply the theoretical knowledge of instruments, new analytical methods may be developed and validated for the screening of various pharmaceutical agents.

REFERENCES:

- 1. Atherden L.M, "Bentley and Driver's Textbook of Pharmaceutical Chemistry", 8th Edition, Oxford University Press, 2004.
- 2. Siddiqui, Anees A, "Pharmaceutical Analysis". Vol.I& II, 3rd edition, CBS Publishers, 2014.
- 3. Takeru Higuchi, Einar Brochmann, Hanffen Hanssen, Hamffen Hanssen, "Pharmaceutical Analysis" 1st Edition, CBS Publishers, 2005.
- 4. Loyd V. Allen Jr, "Remington: The Science and Practice of Pharmacy". Vol. I & II, 22nd Edition, Pharmaceutical Press, 2012.
- 5. Kenneth A. Connors, "Text book of Pharmaceutical Analysis", 3rd Edition, John wiley and sons, New York, 2007.

Course Articulation Matrix

Course Outcome			Pro	ogra	mme	Out	com	es(P	0)				S Ou	grar peci itcor (PSC	nes	
	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 11	PO 12	PS O1	PS O2	PS O 3					
CO1	3		3	3				3								
CO2			3	3	2	2							3			2
CO3				3	3		2						2		3	
CO4	3	3		2	2							2	3	3		
CO5	3	3	Ą		2					-		2		3		
CO6	3	3		3	3		2	75	2		7	2	3		2	2
AVERAGE CO	3	3	3	2.8	2.3	2	2		2		N	2	2.75	3	3	2

PY3711

INDUSTRIAL TRAINING / INTERNSHIP II**

LTPC 0002

OBJECTIVES:

To enable the students to

- Get connected with industry/ laboratory/research institute
- Get practical knowledge on production process in the industry and develop skills to solve related problems
- Develop skills to carry out research in the research institutes/laboratories

The students individually undergo training in reputed firms/ research institutes / laboratories for the specified duration. After the completion of training, a detailed report should be submitted within ten days from the commencement of next semester. The students will be evaluated as per the Regulations.

No. of. Weeks: 04

OUTCOMES:

On completion of the course, the student will know about

CO1: Plant layout, machinery, organizational structure and production processes in the firm or research facilities in the laboratory/research institute

CO2: Analysis of industrial / research problems and their solutions

CO3: Documenting of material specifications, machine and process parameters, testing parameters and results

CO4: Preparing of Technical report and presentation

SEMESTER VII

PY3701 REGULATORY REQUIREMENTS IN PHARMACEUTICAL INDUSTRIES

L T P C 3 0 0 3

OBJECTIVE

• To acquire the knowledge of pharmaceutical industry regulations and research

UNIT I REGULATORY CONCEPTS

9

Quality assurance – Quality control – Practice of cGMP – WHO Guidelines – Schedule M – USFDA.

UNIT II REGULATORY ASPECTS

9

Pharmaceuticals: Bulk drug manufacture; Personnel, Buildings and Facilities, Process Equipment, Documentation and Records, Materials Management, Production and In-Process Controls, Packaging and Identification Labelling of API's and Intermediates, Storage and distribution, – Biotechnology derived products; Principles, Personnel, Premises and equipments, Animal quarters and care, production, labelling, Lot processing records and distribution records, quality assurance and quality control.

UNIT III INTELLECTUAL PROPERTY RIGHTS

9

Patent system – Different types of patents – Filing process of application for patent – Infringement of patents – The patent rules 2003 as amended by the patents (amendment) rules 2016.

UNIT IV ICH GUIDELINES

9

Quality guidelines – Impurities in new drug substances (Q3A(R2)) – Impurities in new drug products(Q3B(R2)) – Validation of analytical procedures text and methodology (Q2 (R1)).

UNIT V QUALITY AUDIT AND SELF INSPECTIONS

Q

TOTAL: 45 PERIODS

SOPs – Documentation – Loan license auditing – Common technical documentation (CTD) – Drug master file (DMF) – Batch manufacturing record (BMR).

COURSE OUTCOMES:

The student will be able to

- Familiarize with the pharmaceutical industry manufacturing practices and regulatory
- Implement and judge the requirements of regulatory agencies for the pharmaceutical
- Understand the process of patenting activities.
- Know the quality guidelines followed for pharmaceutical products and few of the aspects involved in document preparation for pharmaceutical product registration
- Aware about the technical process of quality audit and inspections.
- Fulfill the regulatory requirements for pharmaceutical products

TEXT BOOKS:

- 1. Sharma, P.P., "How to Practice GMPs", 3rd Edition, Vandana Publications, 2006
- 2. C.V.Subbrahmanyam &J.Thimmasetty, Pharmaceutical regulatory affairs, 1st Edn., vallabhPrakashan, New Delhi, 2012.
- 3. N Udupa, Krishnamurthy Bhat, A Concise Textbook of Drug Regulatory Affairs, Manipal University Press (MUP); First Edition, 2015.

REFERENCES:

- 1. Ira R. Berry, The Pharmaceutical Regulatory Process, marcel dekker Series: Drugs and the Pharmaceutical Sciences, by CRC Press, Newyork, 2004.
- 2. Mindy J. Allport-Settle, Current Good Manufacturing Practices: Pharmaceutical, Biologics, and Medical Device Regulations and Guidance Documents Concise Reference, Pharmalogika Inc., USA, 2009.
- 3. Willig, H., Tuckeman, M.M. and Hitchings, W.S., "Good Manufacturing Practices for Pharmaceuticals", 5th Edition, Marcel Dekker Drugs and the Pharmaceutical Sciences, by CRC Press, New York, 2000.

Course Articulation Matrix

Course	Prog	gramn	ne Ou	utcom	es (F	O)							Progr	amme	Spec	cific
Outcome													Outco	mes		
													(PSO			
	PO ₁	PO2	PO3	PO4	PO ₅	PO6	PO7	P08	PO9	PO10	PO11	PO12	PSO1	PSO ₂	PSO	PSO
															3	4
CO1	2					3		3					3	2		
CO2				3					2					2		
CO3				2		3							2			
CO4		3	3										2	2		
CO5					2			2	2				2			
CO6		2			2	2				1400			3	2		
Average CO	2	2.5	3	2.5	2	2.6	_	2.5	2	-//		§ -	2.4	2	-	-

PY3702 BIOPHARMACEUTICS AND PHARMACOKINETICS

1 T P C 3 0 0 3

OBJECTIVES:

The course aims to

- learn important parameters involved in drug disposition and its principles in living systems.
- make the students to understand how the drug disposition takes place in the in vitro and in vivo conditions.
- understand the concepts of bioavailability and bioequivalence of drug products and their significance

UNIT I DRUG ABSORPTION AND DISTRIBUTION

9

Mechanisms of drug absorption through GIT, factors influencing drug absorption through GIT, absorption of drug from Non-per oral extravascular routes, Distribution of drugs, Tissue permeability of drugs, binding of drugs, apparent volume of drug distribution, plasma and tissue protein binding of drugs, factors affecting protein-drug binding. Kinetics of protein binding, Clinical significance of protein binding of drugs.

UNIT II ELIMINATION

9

Drug metabolism, metabolic pathways, factors affecting metabolism, renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non- renal routes of drug excretion of drugs.

UNIT III BIOAVAILABILITY AND BIOEQUIVALENCE

9

Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, in-vitro drug dissolution models, in-vitro-in-vivo correlations, bioequivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs.

UNIT IV PHARMACOKINETICS

9

Introduction to Pharmacokinetics, Pharmacokinetic models, One compartment open model Intravenous Bolus Injection – Intravenous infusion - Extra vascular administrations. Determination of pharmacokinetics parameters and their significance - Absorption Rate Constant (ka), Elimination Rate Constant (K) & Elimination Half- life (t½), AUC, Cmax, and tmax. Apparent Volume of Distribution (Vd) & Renal Clearance (Q).

UNIT V MULTIPLE DOSAGE REGIMENS AND NONLINEAR PHARMACOKINETICS

Concept, Accumulation, Persistent and elimination factors. Calculation of dosage regimen following repetitive IV and oral administration. Nonlinear Pharmacokinetics - Introduction, factors causing Non-linearity, Michaelis-menton method of estimating pharmacokinetic parameters.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On completion of the course the students will be able to

- 1. identify the factors affecting the rate of drug absorption.
- 2. study the various factors influencing the drug disposition, various pharmacokinetic parameters.
- 3. Estimate various pharmacokinetic parameters using plasma and urine drug level data.
- 4. design and interpret the bioavailability and bioequivalence of dosage forms.
- 5. Predict the effects of dosage form design and routes of drug administration on drug levels in the body.
- 6. Demonstrate the technical skills acquired in the field of pharmaceutical technology

TEXT BOOKS:

- 1. Rosenbaum, S. E. "Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations", 2nd Edition, John Wiley & Sons, 2016.
- 2. Brahmankar, D.M. and Jaiswal, S.B. "Biopharmaceutics and Pharmacokinetics: a Treatise", Aliq publication, 2019.
- 3. Sunil Bakliwal and Dr. Anant Paradkar "Biopharmaceutics and Pharmacokinetics" NiraliPrakashan, 2020 ISBN-13978-9389825206
- 4. Alexander T. Florence; David Attwood "Physicochemical Principles of Pharmacy In Manufacture, Formulation and Clinical Use", Sixth Edition, Pharmaceutical Press, Royal Pharmaceutical Society, London, UK, 2015, ISBN 978 0 85711 174 6
- 5. Judith E. Thompson and Lawrence W. Davidow "A Practical Guide to Contemporary Pharmacy Practice", Third Edition, Lippincott Williams & Wilkins ISBN 978-0781-7839-65

REFERENCES:

- 1. Robert E Notari "Biopharmaceutics and Clinical Pharmacokinetics" 2019, Taylor & Francis ISBN -13 978-0367340797
- 2. Shargel, L and Andrew, B.C. Yu. "Applied Biopharmaceutics & Pharmacokinetics",7th Edition, The McGraw-Hill Companies, Inc, 2016.
- 3. Gibaldi, M. "Biopharmaceutics & Clinical Pharmacokinetics", 4th Edition, Pharma Book Syndicate, 2016.
- 4. Jambhekar, S.S. and Philip, J. B. "Basic Pharmacokinetics" 2nd Edition, Pharmaceutical Press, 2012

Course Articulation Matrix

			R	Pr	ograi	nme	Outc	omes	(PO)	ł Kł	107	/ LE		ramm omes		
Course	Р	Р	Р	Р	Р	РО	РО	PS	PS	PS	PS					
out	O1	O2	O3	04	O5	O6	07	08	O9	10	11	12	O1	O2	О3	O4
come																
CO1	2	2	2	2	2	-	1	-	-	-	-	2	1	1	3	3
CO2	2	2	2	2	2	-	1	-	-	-	-	2	1	1	3	3
CO3	2	2	1	2	2	-	1	-	-	-	-	2	1	1	3	3
CO4	2	2	1	2	2	-	1	-	-	-	-	2	1	1	3	3
CO5	2	2	-	-	-	-	-	-	-	-	-	2	1	-	3	3
CO6	2	2	2	2	1	-	-	-	-	-	-	2	1	-	3	3
AVER	2	2	1	2	2	-	1	-	-	-	-	2	1	1	3	3
AGE																
CO																

PROJECT WORK / INTERNSHIP#

L T P C 0 0 20 10

PY3811

OBJECTIVES:

To train the students in

- Identifying problem and developing the structured methodology to solve the identified problem in the industry or research problem at research Institution or college.
- Conducting experiments, analyze and discuss the test results, and make conclusions.
- Preparing project reports and presentation

The students shall individually / or as group work on a specific topic approved by the Department. The student can select any topic which is relevant to his/her specialization of the programme. The student should continue the work on the selected topic as per the formulated methodology. At the end of the semester, after completing the work to the satisfaction of the supervisor and review committee, a detailed report which contains clear definition of the identified problem, detailed literature review related to the area of work and methodology for carrying out the work, results and discussion, conclusion and references should be prepared as per the format prescribed by the University and submitted to the Head of the department. The students will be evaluated based on the report and viva-voce examination by a panel of examiners as per the Regulations.

OUTCOMES:

At the end of the project, the student will be able to

CO1: Formulate and analyze problem / create a new product/ process.

CO2: Design and conduct experiments to find solution

CO3: Analyze the results and provide solution for the identified problem, prepare project report and make presentation.

GE3751

PRINCIPLES OF MANAGEMENT

L T P C 3 0 0 3

TOTAL: 300 PERIODS

COURSE OBJECTIVES:

- Sketch the Evolution of Management.
- Extract the functions and principles of management.
- Learn the application of the principles in an organization.
- Study the various HR related activities.
- Analyze the position of self and company goals towards business.

UNIT I INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

9

Definition of Management – Science or Art – Manager Vs Entrepreneur- types of managers-managerial roles and skills – Evolution of Management –Scientific, human relations, system and contingency approaches – Types of Business organization- Sole proprietorship, partnership, company-public and private sector enterprises- Organization culture and Environment – Current trends and issues in Management.

UNIT II PLANNING

9

Nature and purpose of planning – Planning process – Types of planning – Objectives – Setting objectives – Policies – Planning premises – Strategic Management – Planning Tools and Techniques – Decision making steps and process.

UNIT III ORGANISING

9

Nature and purpose – Formal and informal organization – Organization chart – Organization structure – Types – Line and staff authority – Departmentalization – delegation of authority – Centralization and decentralization – Job Design - Human Resource Management – HR Planning,

Recruitment, selection, Training and Development, Performance Management, Career planning and management.

UNIT IV DIRECTING

9

Foundations of individual and group behaviour— Motivation — Motivation theories — Motivational techniques — Job satisfaction — Job enrichment — Leadership — types and theories of leadership — Communication — Process of communication — Barrier in communication — Effective communication — Communication and IT.

UNIT V CONTROLLING

9

TOTAL: 45 PERIODS

System and process of controlling – Budgetary and non - Budgetary control techniques – Use of computers and IT in Management control – Productivity problems and management – Control and performance – Direct and preventive control – Reporting.

COURSE OUTCOMES:

CO1: Upon completion of the course, students will be able to have clear understanding of managerial functions like planning, organizing, staffing, leading & controlling.

CO2: Have same basic knowledge on international aspect of management.

CO3: Ability to understand management concept of organizing.

CO4: Ability to understand management concept of directing.

CO5: Ability to understand management concept of controlling.

TEXT BOOKS:

- 1. Harold Koontz and Heinz Weihrich "Essentials of management" Tata McGraw Hill, 1998.
- 2. Stephen P. Robbins and Mary Coulter, "Management", Prentice Hall (India)Pvt. Ltd., 10th Edition, 2009.

REFERENCES:

- 1. Robert Kreitner and MamataMohapatra, "Management", Biztantra, 2008.
- 2. Stephen A. Robbins and David A. Decenzo and Mary Coulter, "Fundamentals of
- 3. Management" Pearson Education, 7th Edition, 2011.
- 4. Tripathy PC and Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

CO'a	PO's												PSO's	S	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3		-	-	-	1	-	-	-		-	-	2	1	1
2	-	1	1	-						E		-	2	1	-
3	1		R () (;	2		- 44	1	- 1	2	- 1	1	1	-	-	2
4	-	1	1	1	2	-	-	1	2	-		-	1	1	1
5	1		_	-	1	1	-	-	-	3	_	1	1	-	1
AVg.	1.66	1	1	1.5	1.5	1	1	1	2	3	1	1	1.5	1	1.25

GE3752

TOTAL QUALITY MANAGEMENT

LTPC 3003

COURSE OBJECTIVES:

- Teach the need for quality, its evolution, basic concepts, contribution of quality gurus, TQM framework, Barriers and Benefits of TQM.
- Explain the TQM Principles for application.
- Define the basics of Six Sigma and apply Traditional tools, New tools, Benchmarking and FMEA.

- Describe Taguchi's Quality Loss Function, Performance Measures and apply Techniques like QFD, TPM, COQ and BPR.
- Illustrate and apply QMS and EMS in any organization.

UNIT I INTRODUCTION

9

Introduction - Need for quality - Evolution of quality - Definition of quality - Dimensions of product and service quality -Definition of TQM-- Basic concepts of TQM - Gurus of TQM (Brief introduction) -- TQM Framework- Barriers to TQM -Benefits of TQM.

UNIT II TQM PRINCIPLES

9

Leadership - Deming Philosophy, Quality Council, Quality statements and Strategic planning-Customer Satisfaction –Customer Perception of Quality, Feedback, Customer complaints, Service Quality, Kano Model and Customer retention – Employee involvement – Motivation, Empowerment, Team and Teamwork, Recognition & Reward and Performance Appraisal-Continuous process improvement –Juran Trilogy, PDSA cycle, 5S and Kaizen - Supplier partnership – Partnering, Supplier selection, Supplier Rating and Relationship development.

UNIT III TQM TOOLS & TECHNIQUES I

9

The seven traditional tools of quality - New management tools - Six-sigma Process Capability-Bench marking - Reasons to benchmark, Benchmarking process, What to Bench Mark, Understanding Current Performance, Planning, Studying Others, Learning from the data, Using the findings, Pitfalls and Criticisms of Benchmarking - FMEA - Intent , Documentation, Stages: Design FMEA and Process FMEA.

UNIT IV TQM TOOLS & TECHNIQUES II

9

Quality circles – Quality Function Deployment (QFD) - Taguchi quality loss function – TPM – Concepts, improvement needs – Performance measures- Cost of Quality - BPR.

UNIT V QUALITY MANAGEMENT SYSTEM

9

Introduction-Benefits of ISO Registration-ISO 9000 Series of Standards-Sector-Specific Standards - AS 9100, TS16949 and TL 9000-- ISO 9001 Requirements-Implementation-Documentation-Internal Audits-Registration-ENVIRONMENTAL MANAGEMENT SYSTEM: Introduction—ISO 14000 Series Standards—Concepts of ISO 14001—Requirements of ISO 14001-Benefits of EMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Ability to apply TQM concepts in a selected enterprise.

CO2: Ability to apply TQM principles in a selected enterprise.

CO3: Ability to understand Six Sigma and apply Traditional tools, New tools, Benchmarking and EMFA

CO4: Ability to understand Taguchi's Quality Loss Function, Performance Measures and apply QFD, TPM, COQ and BPR.

CO5: Ability to apply QMS and EMS in any organization.

CO's-PO's & PSO's MAPPING

CO's	PO's												PSO'	's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3										3	2		3
2						3						3		2	
3					3				3					2	3
4		2			3	2	3	2				3	3	2	
5			3			3	3	2							
AVg.		2.5	3		3	2.6	3	2	3			3	2.5	2	3

TEXT BOOK:

1. Dale H.Besterfiled, Carol B.Michna, Glen H. Bester field, Mary B.Sacre, Hemant Urdhwareshe and Rashmi Urdhwareshe, "Total Quality Management", Pearson Education Asia, Revised Third Edition, Indian Reprint, Sixth Impression, 2013.

REFERENCES:

- 1. Joel.E. Ross, "Total Quality Management Text and Cases", Routledge., 2017.
- 2. Kiran.D.R, "Total Quality Management: Key concepts and case studies, Butterworth Heinemann Ltd, 2016.
- 3. Oakland, J.S. "TQM Text with Cases", Butterworth Heinemann Ltd., Oxford, Third Edition, 2003.
- 4. Suganthi,L and Anand Samuel, "Total Quality Management", Prentice Hall (India) Pvt. Ltd., 2006.

GE3753 ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING L T P C 3 0 0 3

COURSE OBJECTIVES:

- Understanding the concept of Engineering Economics.
- Implement various micro economics concept in real life.
- · Gaining knowledge in the field of macro economics to enable the students to have better
- understanding of various components of macro economics.
- Understanding the different procedures of pricing.
- Learn the various cost related concepts in micro economics.

UNIT I DEMAND & SUPPLY ANALYSIS

a

Managerial Economics - Relationship with other disciplines - Firms: Types, objectives and goals - Managerial decisions - Decision analysis.Demand - Types of demand - Determinants of demand - Demand function - Demand elasticity - Demand forecasting - Supply - Determinants of supply - Supply function - Supply elasticity.

UNIT II PRODUCTION AND COST ANALYSIS

9

Production function - Returns to scale - Production optimization - Least cost input - Isoquants - Managerial uses of production function. Cost Concepts - Cost function - Determinants of cost - Short run and Long run cost curves - Cost Output Decision - Estimation of Cost.

UNIT III PRICING

9

Determinants of Price - Pricing under different objectives and different market structures - Price discrimination - Pricing methods in practice.

UNIT IV FINANCIAL ACCOUNTING (ELEMENTARY TREATMENT)

9

Balance sheet and related concepts - Profit & Loss Statement and related concepts - - Financial Ratio Analysis - Cash flow analysis - Funds flow analysis - Comparative financial statements - Analysis & Interpretation of financial statements.

UNIT V CAPITAL BUDGETING (ELEMENTARY TREATMENT)

9

Investments - Risks and return evaluation of investment decision - Average rate of return - Payback Period - Net Present Value - Internal rate of return.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students able to

CO1: Upon successful completion of this course, students will acquire the skills to apply the basics of economics and cost analysis to engineering and take economically sound decisions

CO2: Evaluate the economic theories, cost concepts and pricing policies

CO3: Understand the market structures and integration concepts

CO4: Understand the measures of national income, the functions of banks and concepts of globalization

CO5: Apply the concepts of financial management for project appraisal

TEXT BOOKS:

- 1. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2001.
- 2. Managerial Economics: Analysis, Problems and Cases P. L. Mehta, Edition, 13. Publisher, Sultan Chand, 2007.

REFERENCES:

- 1. Chan S.Park, "Contemporary Engineering Economics", Prentice Hall of India, 2011.
- 2. Donald.G. Newman, Jerome.P.Lavelle, "Engineering Economics and analysis" Engg. Press, Texas, 2010.
- 3. Degarmo, E.P., Sullivan, W.G and Canada, J.R, "Engineering Economy", Macmillan, New York, 2011.
- 4. Zahid A khan: Engineering Economy, "Engineering Economy", Dorling Kindersley, 2012
- 5. Dr. S. N. Maheswari and Dr. S.K. Maheshwari: Financial Accounting, Vikas, 2009

MAPPING OF COS AND POS:

CO's	PO's												PSO	's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3								2			1	3	
2		3												2	2
3		2													
4	2	3	3		2								2	3	
5	3	3	3		2						7//		2		2
AVg.	2.5	2.4	3		2					2			1.8	2.6	2

GE3754

HUMAN RESOURCE MANAGEMENT

L T P C 3 0 0 3

OBJECTIVE:

- To provide knowledge about management issues related to staffing,
- To provide knowledge about management issues related to training,
- To provide knowledge about management issues related to performance
- To provide knowledge about management issues related to compensation
- To provide knowledge about management issues related to human factors consideration and compliance with human resource requirements.

UNIT I INTRODUCTION TO HUMAN RESOURCE MANAGEMENT

9

The importance of human resources – Objective of Human Resource Management - Human resource policies - Role of human resource manager.

UNIT II HUMAN RESOURCE PLANNING

9

Importance of Human Resource Planning – Internal and External sources of Human Resources - Recruitment - Selection – Socialization.

UNIT III TRAINING AND EXECUTIVE DEVELOPMENT

9

Types of training and Executive development methods – purpose – benefits.

UNIT IV EMPLOYEE COMPENSATION

9

Compensation plan – Reward – Motivation – Career Development - Mentor – Protege relationships.

UNIT V PERFORMANCE EVALUATION AND CONTROL

g

Performance evaluation – Feedback - The control process – Importance – Methods – grievances – Causes – Redressal methods.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Students would have gained knowledge on the various aspects of HRM

CO2: Students will gain knowledge needed for success as a human resources professional.

CO3: Students will develop the skills needed for a successful HR manager.

CO4: Students would be prepared to implement the concepts learned in the workplace.

CO5: Students would be aware of the emerging concepts in the field of HRM

TEXT BOOKS:

- 1. Decenzo and Robbins, "Human Resource Management", 8th Edition, Wiley, 2007.
- 2. John Bernardin. H., "Human Resource Management An Experimental Approach", 5th Edition, Tata McGraw Hill, 2013, New Delhi.

REFERENCES:

- 1. Luis R,. Gomez-Mejia, DavidB. Balkin and Robert L. Cardy, "Managing Human Resources", 7th Edition, PHI, 2012.
- 2. Dessler, "Human Resource Management", Pearson Education Limited, 2007.

CO's-PO's & PSO's MAPPING

CO's	PO's												PSO	's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	2	1	2	2	2	1	1	2	1	1	1	1	1	1
2	3	3	2	3	2	2	2	2	3	1	2	1	1	2	1
3	3	3	3	3	3	3	2	2	3	1	2	1	1	2	1
4	3	3	2	3	3	2	2	2	2	1	1	1	1	1	1
5	3	3	1	2	2	2	2	2	2	1	1	1	1	1	1
AVg.	2.8	2.8	1.8	2.6	2.6	2.2	1.8	1.8	2.4	1	1.4	1	1	1.4	1

GE3755

KNOWLEDGE MANAGEMENT

L T P C 3 0 0 3

COURSE OBJECTIVES:

The student should be made to:

- Learn the Evolution of Knowledge management.
- Be familiar with tools.
- Be exposed to Applications.
- Be familiar with some case studies.

UNIT I INTRODUCTION

9

Introduction: An Introduction to Knowledge Management -The foundations of knowledge management- including cultural issues- technology applications organizational concepts and processes- management aspects- and decision support systems. The Evolution of Knowledge management: From Information Management to Knowledge Management - Key Challenges Facing the Evolution of Knowledge Management - Ethics for Knowledge Management.

UNIT II CREATING THE CULTURE OF LEARNING AND KNOWLEDGE SHARING

9

Organization and Knowledge Management - Building the Learning Organization. Knowledge Markets: Cooperation among Distributed Technical Specialists - Tacit Knowledge and Quality Assurance.

UNIT III KNOWLEDGE MANAGEMENT-THE TOOLS

C

Telecommunications and Networks in Knowledge Management - Internet Search Engines and Knowledge Management - Information Technology in Support of Knowledge Management - Knowledge Management and Vocabulary Control - Information Mapping in Information Retrieval - Information Coding in the Internet Environment - Repackaging Information.

UNIT IV KNOWLEDGE MANAGEMENT APPLICATION

9

Components of a Knowledge Strategy - Case Studies (From Library to Knowledge Center, Knowledge Management in the Health Sciences, Knowledge Management in Developing Countries).

UNIT V FUTURE TRENDS AND CASE STUDIES

9

TOTAL: 45 PERIODS

Advanced topics and case studies in knowledge management - Development of a knowledge management map/plan that is integrated with an organization's strategic and business plan - A case study on Corporate Memories for supporting various aspects in the process life -cycles of an organization.

COURSE OUTCOMES:

Upon completion of the course, the student should be able to:

CO1: Understand the process of acquiry knowledge from experts

CO2: Understand the learning organization.

CO3: Use the knowledge management tools.

CO4: Develop knowledge management Applications.

CO5: Design and develop enterprise applications.

CO's- PO's & PSO's MAPPING

CO's	PO's												PSO	's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1					1						-	7.			
2					2								1		
3					2									2	
4				1	1				1					1	
5			10 A	1	1			4117	1		ALLE			1	
AVg.				1	1.4				1			IEL	1	1.33	

TEXT BOOK:

1. Srikantaiah, T.K., Koenig,

M., "Knowledge Management for the Information Professional" Information Today, Inc., 2000.

REFERENCE:

1. Nonaka, I., Takeuchi, H., "The Knowledge-Creating Company: How Japanese Companies Create the Dynamics of Innovation", Oxford University Press, 1995.

COURSE OBJECTIVES

- To study the basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
- To study the planning; organizing and staffing functions of management in professional organization.
- To study the leading; controlling and decision making functions of management in professional organization.
- To learn the organizational theory in professional organization.
- To learn the principles of productivity and modern concepts in management in professional organization.

UNIT – I INTRODUCTION TO MANAGEMENT

9

Management: Introduction; Definition and Functions – Approaches to the study of Management – Mintzberg's Ten Managerial Roles – Principles of Taylor; Fayol; Weber; Parker – Forms of Organization: Sole Proprietorship; Partnership; Company (Private and Public); Cooperative – Public Sector Vs Private Sector Organization – Business Environment: Economic; Social; Political; Legal – Trade Union: Definition; Functions; Merits & Demerits.

UNIT – II FUNCTIONS OF MANAGEMENT - I

9

Planning: Characteristics; Nature; Importance; Steps; Limitation; Planning Premises; Strategic Planning; Vision & Mission statement in Planning- Organizing: Organizing Theory; Principles; Types; Departmentalization; Centralization and Decentralization; Authority & Responsibility – Staffing: Systems Approach; Recruiting and Selection Process; Human Resource Development (HRD) Concept and Design.

UNIT – III FUNCTIONS OF MANAGEMENT - II

9

Directing (Leading): Leadership Traits; Style; Morale; Managerial Grids (Blake-Mounton, Reddin) – Communication: Purpose; Model; Barriers – Controlling: Process; Types; Levels; Guidelines; Audit (External, Internal, Merits); Preventive Control – Decision Making: Elements; Characteristics; Nature; Process; Classifications.

UNIT – IV ORGANIZATION THEORY

9

Organizational Conflict: Positive Aspects; Individual; Role; Interpersonal; Intra Group; Inter Group; Conflict Management – Maslow's hierarchy of needs theory; Herzberg's motivation-hygiene theory; McClelland's three needs motivation theory; Vroom's valence-expectancy theory – Change Management: Concept of Change; Lewin's Process of Change Model; Sources of Resistance; Overcoming Resistance; Guidelines to managing Conflict.

UNIT – V PRODUCTIVITY AND MODERN TOPICS

9

Productivity: Concept; Measurements; Affecting Factors; Methods to Improve – Modern Topics (concept, feature/characteristics, procedure, merits and demerits): Business Process Reengineering (BPR); Benchmarking; SWOT/SWOC Analysis; Total Productive Maintenance; Enterprise Resource Planning (ERP); Management of Information Systems (MIS).

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course the students would be able to

- CO1 Explain basic concepts of management; approaches to management; contributors to management studies; various forms of business organization and trade unions function in professional organizations.
- CO2 Discuss the planning; organizing and staffing functions of management in professional organization.
- CO3 Apply the leading; controlling and decision making functions of management in professional organization.

- CO4 Discuss the organizational theory in professional organization.
- CO5 Apply principles of productivity and modern concepts in management in professional organization.

TEXTBOOKS:

- 1 M. Govindarajan and S. Natarajan, "Principles of Management", Prentice Hall of India, New Delhi, 2009.
- 2 Koontz. H. and Weihrich. H., "Essentials of Management: An International Perspective", 8th Edition, Tata McGrawhill, New Delhi, 2010.

REFERENCES:

- 1 Joseph J, Massie, "Essentials of Management", 4th Edition, Pearson Education, 1987.
- **2** Saxena, P. K., "Principles of Management: A Modern Approach", Global India Publications, 2009.
- 3 S.Chandran, "Organizational Behaviours", Vikas Publishing House Pvt. Ltd., 1994.
- 4 Richard L. Daft, "Organization Theory and Design", South Western College Publishing, 11th Edition, 2012.
- 5 S. TrevisCerto, "Modern Management Concepts and Skills", Pearson Education, 2018.

MAPPING OF COS AND POS:

						Р	0							PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1
2	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1
3	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1
4	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1
5	1	1	1	1	1	3	2	3	2	3	1	3	1	1	1

VERTICAL 1: DRUG DESIGN & DEVELOPMENT

PY3001 MEDICINAL CHEMISTRY L T P C 3 0 0 3

OBJECTIVES:

- To impart comprehensive understanding of the physicochemical basis of drug action including steric and stereoisomerism.
- To provide knowledge on the classification, chemical nomenclature, generic names and synthesis of various categories of medicinal drugs.
- To enable the students to learn and understand the structure activity relationship, biochemical/molecular basis of mechanism of action and uses of different classifications of drugs.

UNIT I PRINCIPLES OF MEDICINAL CHEMISTRY

Physicochemical properties in relation to biological action: Ionization, Drug distribution and pKa values and their relation to drug transport, hydrogen bonding, redox potential, surface activity and chelation. Conformational isomerism, optical and geometrical isomerism; Bioisosterism in drug design.

UNIT II DRUGS ACTING ON AUTONOMIC NERVOUS SYSTEM

9

Classification, biochemical/molecular basis of mechanism of action, structure activity relationship including stereo chemical aspects, physiochemical properties and synthesis of selected drugs belonging to the class of Cholinergics, Anticholinergics and Adrenergics.

UNIT III DRUGS ACTING ON THE CENTRAL NERVOUS SYSTEM

9

Classification, molecular basis of mechanism of action, structure activity relationship and synthesis of Sedatives, Hypnotics and anxiolytics; Opioid analgesics; Anticonvulsants and antidepressants.

UNIT IV DRUGS ACTING ON CARDIOVASCULAR SYSTEM

9

Structural basis of mechanism of action, structure activity relationship including physiochemical properties and synthesis of selected drugs belonging to the class of anti-anginal, vasodilators, calcium channel blockers and cardiac glycosides.

UNIT V EICOSANOIDS, ANTIHISTAMINE AND ANTIINFLAMMATORY DRUGS 9

Synthetic procedures, uses, structure activity relationship including physicochemical properties of the following classes of drugs Antihistamines, Eicosanoids, Non-steroidal anti-inflammatory drugs (NSAIDs).

TOTAL: 45 PERIODS

TEXT BOOKS:

- Ashutosh Kar, Medicinal Chemistry, 6th Edition, New Age International (P) Ltd. Publishers, New Delhi 2015.
- 2. Graham L. Patrick, An introduction to Medicinal Chemistry, 6th Edition, Oxford University Press, 2017.
- 3. Ilango, K. and Valentina, P., "Text book of Medicinal Chemistry", Vol.1 & 2, 1st & 2 nd edition, Keerthi Publishers, 2017.

REFERENCES:

- 1. Donald J. Abraham, Burger's Medicinal Chemistry and Drug Discovery, Vol 1-8, 8th Edition, Donald J. Abraham, Michael Myers, Wiley, 2021.
- Wilson and Gisvold's Textbook of Organic, Medicinal and Pharmaceutical Chemistry, Editors - John M Beale and John Block, 12th Edition, Lippincott Williams & Wilkins, 2010.
 William O Foye, Thomas L Lemke, David A Williams Foye's Principles of Medicinal
- 3. William O Foye, Thomas L Lemke, David A Williams Foye's Principles of Medicinal Chemistry, 7th Edition, Wolters Kluwer Health Adis (ESP) Publisher, 2012.

COURSE OUTCOMES:

The student will be able to

- Correlate the relationship between the physicochemical properties, steric properties and structural features of the drugs with its biological action.
- Explain the biochemical/molecular mechanism of action, Structure Activity Relationship, therapeutic use and depict the synthesis of drugs acting on autonomic nervous system.
- Describe the molecular basis of mechanism of action, therapeutic use, Structure Activity Relationship and synthesis of drugs acting on central nervous system.
- Illustrate the mechanism of action, therapeutic use and synthesis of drugs acting on cardiovascular system.
- Outline the chemical structure, mechanism of action, Structure Activity Relationship and therapeutic uses of eicosanoids and eicosanoid blocking agents.
- Apply the working knowledge of chemical structures, Structure Activity Relationship and molecular mechanism of drug action to suggest drug design ideas and to develop suitable techniques to synthesis different drug molecules.

COURSE ARTICULATION MATRIX

			PROC	GRAMN	ME C	UTC	OMES (PO)						SPE	RAMME CIFIC IES (PS	
Course outcom e	1	2	12	1	2	3	4									
CO 1	3	2	3	2	3	-	3	1								
CO 2	3	1	2	2	-	-	1	-	-	-	-	2	2	-	2	-
CO 3	3	1	2	2	-	-	1	-	-		-	2	2	-	2	-
CO 4	3	1	2	2	-	-	1	- '	-	-	-	2	2	-	2	-
CO 5	3	1	2	2	-	-	1	-	1-1-	-		2	2	-	2	-
CO 6	3	3	3	3	-	2	2	-		F	b. "	2	3	-	3	2
OVERA LL CO	3	1.5	2.33	2.33	v	2	1.33	-	-	. `	9	2	2.33	-	2.33	1.5

PY3002 BIOINFORMATICS AND CHEMINFORMATICS

L T P C

OBJECTIVE:

- This course is to provide an introduction to cheminformatics an interdisciplinary area on the interface of chemistry, informatics and biology.
- The student will be able to learn and understand the fundamentals of cheminformatics and its applications.

UNIT I BIOINFORMATICS AND BIOLOGICAL DATABASES

9

Introduction and scope of Bioinformatics, DNA and protein sequences, genome and transcriptome, extracting, collecting and storing sequences; various file formats for bio-molecular sequences: GenBank, FASTA, GCG, MSF, NBRF-PIR. Introduction to Biological Databases; nucleic acid sequence databases: GenBank, EMBL, DDBJ; protein sequence databases: Uniprot-KB: SWISS-PROT, TrEMBL; repositories for high throughput genomic sequences: EST, STS GSS; Genome databases at NCBI, EBI, TIGR, SANGER; structure databases: PDB, NDB, PubChem, ChemBank. Identification and interpretation of patterns in sequences; sequence patterns: InterPro, Prosite, Pfam, ProDom; structure patterns: FSSP, DSSP.

UNIT II SEQUENCE ALIGNMENT

9

Pairwise and Multiple sequence alignments: basic concepts of sequence alignment, Use of pairwise alignments and Multiple sequence alignment for analysis of Nucleic acid and protein sequences and interpretation of results. Algorithms used in sequence alignments- Needleman—Wunsch algorithm & Smith—Waterman algorithm. Sequence-based Database Searches: BLAST and FASTA, various versions of basic BLAST. Dot plot, basic concepts of sequence similarity, identity and homology, definitions of homologues, orthologues, paralogues; Scoring matrices: basic concept of a scoring matrix, PAM and BLOSUM series.

UNIT III PHYLOGENETIC METHODS

9

Introduction to phylogenetics, Distance based trees UPGMA trees, Molecular clock theory, Ultrametric trees, Parsimonious trees, Neighbour joining trees, trees based on morphological traits,

Bootstrapping. Protein Secondary structure and tertiary structure prediction methods, Homology modeling, abinitio approaches, Threading, Critical Assessment of Structure Prediction, Structural genomics.

UNIT IV CHEMINFORMATICS

9

Introduction, history and applications of cheminformatics; Data and Databases, Accessing PubChem through a Webinterface, Programming Access to the PubChem Database. Representing Small Molecules on Computers, Connection Tables, Molecular Graph issues, Line notation, Structural Data files, Chemical Resolvers, Molecular Editors and Visualization. Database Resources, Database Management, Public chemical Databases, Data Organization in PubChem as Data Aggregator, Database Query. Searching Databases for Chemical Information, PubChem Web Interfaces for Text, Text Search in PubChem, Additional Data Retreival in PubChem, Searching PubChem using a non-textual query, Programming topics.

Self study: Fundamentals of network and graph theory, cluster analysis, machine learning, data mining, big data in biology.

UNIT V ADVANCED CHEMINFORMATICS

9

TOTAL: 45 PERIODS

Quantitative Structure-Property Relationships, Similar-Structure, Similar-Property Principle, Molecular Descriptors, Molecular Similarity, Similarity Coefficients. Computer-Aided Drug Drug Discovery Design (CADDD), Virtual Screening and Molecular Docking. Physicochemical parameters, Chemical reaction prediction and synthesis design.

Self study: Open source tools, techniques, data in cheminformatics, simulation and predictive tools, applications

TEXT BOOKS:

I BOOKS:

- Introduction to Bioinformatics by Lesk, Arthur M., Oxford University Press
 Algorithms on Strings, Trees and Sequences by Dan Gusfield, Cambridge University Press.
- 3. Biological Sequence Analysis Probabilistic Models of proteins and nucleic acids by Durbin, S.Eddy, A.Krogh, G.Mitchison.
- 4. Bioinformatics Sequence and Genome Analysis by David W. Mount, Cold Spring Harbor Laboratory Press. Media.
- 5. Thomas Engel , Johann Gasteiger, Chemoinformatics: Basic Concepts and Methods, ISBN: 978-3-527-33109-3
- 6. Andrew R Leach and Valerie J. Gillet. (2007). Introduction to Chemoinformatics. Springer publications

REFERENCES:

- 1. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins, 3rd Edition (2005) Andreas D. Baxevanis Francis Ouellette ISBN: 978-0-471-47878-2
- 2. Bioinformatics For Dummies, 2nd Edition (2006) Jean-Michel Claverie Cedric Notredame ISBN: 978-0-470-08985-9
- 3. Bioinformatics The Machine Learning Approach by Pierre Baldi and Soren Brunak.
- 4. Beginning Perl for Bioinformatics: An introduction to Perl for Biologists by James Tindall, O"Reilley
- 5. Navneet Sharma, Himanshu Ojha, Pawan Raghav and Ramesh Goyal, "Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences, 1st Edition, Academic Press 2021, Paperback ISBN: 9780128217481, eBook ISBN: 9780128217474
- 6. https://chem.libretexts.org/Courses/Intercollegiate Courses/Cheminformatics OLCC (2019)

COURSE OUTCOMES:

- Have the knowledge of the basic ligand/structure based drug design approaches.
- Understand the basic algorithms used in the established software to carry out the most common CADD project.
- Understand the importance of proper use of various parameters in cheminformatics application programs.

- Practical use of various computational tools available for computer aided drug design including 2D/3D structural database.
- identify cheminformatics problems that are suitable for applying machine learning techniques
- Know the kinds of descriptors available for chemical structures

Course outcome				Pr	ogram	me Ou	itcome)						S	gram pecifi itcom	ic
	1	2	3	4	11	12	1	2	3	4						
CO1	3	2	2	2	2	2	2					2	3			2
CO2	3	2	2	2	2	2	2							3		
CO3	2	2		1								2			3	
CO4	3				3		3						3	3		
CO5		3	3	369		1										
CO6	3	3	3	3											2	3
Average CO	2.33	2.0	1.66	1.33	1.16	0.66	1.16	0	0	0	0	0.66	1	1	0.2	0.83

PY3003 PROTEIN STRUCTURE, FUNCTION AND PROTEOMICS

L T P C 3 0 0 3

OBJECTIVES:

To enable the students

- To identify the importance of protein biomolecules to access, use and evaluate the information available in protein databases to find about a protein of interest.
- To realize and explain key concepts in protein function such as affinity and specificity, allosteric regulation.

UNIT I PROTEIN STRUCTURE

9

Amino Acids Structure and Properties - Peptide Bond Formation and Primary Protein Structure - Secondary Protein Structure - Supersecondary Structure and Protein Motifs - Tertiary and Quaternary Protein Structure - Protein Folding, Denaturation and Hydrolysis.

UNIT II INVESTIGATING PROTEINS

9

Protein Purification - Protein Identification and Visualization - Protein Synthesis and Sequencing - Protein Structure Elucidation - Proteome Analysis

UNIT III PROTEIN REGULATION AND DEGRADATION

9

Isozymes - Post-Translational Modifications - Allosteric Regulation - Zymogen Activation - Intracellular Protein Degradation

UNIT IV TECHNIQUES IN DETERMINING PROTEIN STRUCTURE AND FUNCTION 9 Structure-function relations - Protein Fluorescence Spectroscopy - Protein Circular Dichroism Spectroscopy - Protein EPR spectroscopy - Protein NMR Spectroscopy - Protein X-ray crystallography.

UNIT V PROTEOMICS

9

Introduction to the concept of proteome, components of proteomics, proteomic analysis, importance of proteomics in biological functions, protein arrays, cross linking methods, affinity methods, yeast hybrid systems and protein arrays.

Self study (not for examination): Virtual labs and E-learning proteomics tools.

TEXT BOOKS:

1. Branden C. and Tooze J., "Introduction to Protein Structures" 2nd Edition, Garland Publishing, 1999'

TOTAL: 45 PERIODS

- 2. Creighton T.E. "Proteins" 2nd Edition. W.H. Freeman, 1993.
- 3. Pennington, S.R and M.J. Dunn, "Proteomics: Protein Sequence to Function". VivaBooks, 2002.
- 4. Peptides and Proteins, RSC ROYAL SOCIETY OF CHEMISTRY, SHAWN DOONAN
- 5. Proteins Biochemistry and Biotechnology Second Edition Gary Walsh Wiley Blackwell.
- 6. Recent review articles from peer reviewed journals.

REFERENCES:

- 1. Liebler, "Introduction to Proteomics" Humana Press, 2002.
- 2. David Whitford, "Proteins: Structure and Function" John Wiley & Sons Itd, 2005.
- 3. Introduction to Proteins Structure, Function, and Motion, Second Edition By Amit Kessel, Nir Ben-Tal Copyright Year 2018 ISBN 9781498747172 Published May 17, 2018 by Chapman and Hall/CRC.
- 4. Flatt, P.M. (2019) Biochemistry Defining Life at the Molecular Level. Published by Western Oregon University, Monmouth. (e-book)

COURSE OUTCOMES:

Students completing this course will

- have a foundational level of understanding of the principles of protein structure-dynamicsfunction relations
- explain the molecular principles behind the structure of proteins
- describe entropy enthalpy compensation in macromolecular systems and how it controls stability and structural properties
- have a foundational level of understanding of multiple techniques that are collectively used to determine structures of dynamic protein complexes (NMR, cryo-electron microscopy, small angle X-ray scattering)
- understand selective pressure at the level of protein structure and dynamics in the evolution of new functions
- gain experience reading and critically discussing original literature in this field

Course outco					Progra	amme	Outc	ome							ramm outce	
me	1	2	3	4	5	6	7	8	9	1	1	12	1	2	3	4
CO1	2	1	2	3	3	2							2		3	2
CO2	2	2	2	3	3	2		2	2						2	
CO3	3	3		3	3		2								3	
CO4	3	3	3	3	3							2		3	3	
CO5	2	2	2	2	2											
CO6	2	1	2	2	2			2				3	2			3
Averag	2.3	2.	1.8	2.6	2.6	0.6	0.3	0.6	0.3			8.0	0.6	0.	1.8	8.0
e CO	3	0	3	6	6	6	3	6	3			3	6	5	3	3

CPY331

COMPUTER AIDED DRUG DESIGN

L T P C 3 0 0 3

OBJECTIVES

:The objective of this course is to

- find a chemical compound that can fit to a specific cavity on a protein target both geometrically and chemically.
- to know the informatics approaches to the prediction of chemical properties of new drugs
- to present the appropriate tools for such a modelling, ranging from electronic Structure
- methods, Molecular modelling, Structure Activity Relationships in drug design, QSAR,
- Molecular docking and Molecular dynamics

UNIT I ELECTRONIC STRUCTURE METHODS

8

Quantum chemical methods semi-empirical and ab initio methods. Conformational analysis, energy minimization, predicting the mechanism of organic reactions using electronic structure methods.

UNIT II MOLECULAR MODELING

9

Bioactive vs. global minimum conformations. Automated methods of conformational search. Advantages and limitations of available software. Molecular graphics. Computer methodologies behind molecular modeling including artificial intelligence methods.

UNIT III STRUCTURE ACTIVITY RELATIONSHIPS IN DRUG DESIGN

a

Qualitative versus quantitative approaches advantages and disadvantages. Random screening, Non-random screening, rational approaches to lead discovery. Homologation, chain branching, ring-chain transformations. Insights into molecular recognition phenomenon. Structure based drug design, ligand based drug design.

UNIT IV QSAR: ELECTRONIC EFFECTS

9

Hammett equation, lipophilicity effects. Hansch equation, steric effects. Taft equation. Experimental and theoretical approaches for the determination of physicochemical parameters, parameter interdependence: Regression analysis, Descriptor calculation. The importance of biological data in the correct form; 2D QSAR; 3D-QSAR examples of CoMFA and CoMSIA.

UNIT V MOLECULAR DOCKING

10

Rigid docking, flexible docking, manual docking. Advantages and disadvantages of Flex-X, Flex-S,Autodock and Dock softwares, with successful examples. Dynamics of drugs, biomolecules, drug receptor complexes, Monte Carlo simulations and Molecular dynamics in performing conformational search and docking.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

The students will be able to

- 1. Gain knowledge about fundamental concepts, challenges, and rich opportunities in developing and applying algorithms for structural bioinformatics and healthcare.
- 2. Interpret and practice the fundamental concepts of Molecular Modeling and Computer aided Drug Design.
- 3. Develop practical skills in computational approaches to analyse, predict, and engineer biomolecules and biomolecular systems.
- 4. Find a chemical compound that can fit to a specific cavity on a protein target both geometrically and chemically.
- 5. Present the appropriate tools for such a modelling, ranging from electronic Structure methods, Molecular modelling, Structure Activity Relationships in drug design, QSAR, Molecular docking and Molecular dynamics
- 6. Apply the fundamental tools in techniques like docking, modelling, electronic structure methods which leads to new drug target design.

TEXT BOOKS:

- 1. Andrew R. Leach, Molecular Modelling Principle and Application, 2nd Edition, Prentice Hall, England, 2001.
- 2. Richard B. Silverman, Mark W. Holladay, Organic Chemistry of Drug Design and Drug
- 3. Action, 3rd Edition, Academic Press, USA, 2014.
- 4. Paul S. Charifson, Practical Applications of computer aided drug design, 1st Edition, Marcel Dekker, New York, 1997.
- 5. J. M. Goodman, Chemical Applications of Molecular Modelling, The Royal Society of Chemistry, Cambridge, 1998.

REFERENCES:

- 1. Donald J. Abraham, Burger's Medicinal Chemistry and Drug Discovery, Vol V, 6th Edition, John Wiley and Sons, Inc., 2003.
- 2. John B. Taylor and David J. Triggle, Comprehensive Medicinal Chemistry II, Vol IV, Elsevier Science, 2006.
- 3. Graham L. Patrick, An Introduction to Medicinal Chemistry, 5th Edition, Oxford University Press, UK, 2013.
- 4. David. C. Young, Computational Drug Design A Guide for Computational and Medicinal Chemists, John Wiley and Sons Ltd, Hoboken, United States, 2009.
- 5. Alan Hinchliffe, Molecular Modelling for Beginners, 2nd Edition, Wiley, United University of California, 2008.

		7	7 5	Pro	ogran	nme O	utco	mes (PO)		1	1	Prog spec (PSC		ne outco	mes
Course	РО	PO	РО	РО	РО	РО	РО	РО	PS	PS	PS	PS				
outcome	1	2	3	4	5	11	12	01	02	O3	04					
1	3	2	3	3	2											
2	3	3	2	2		3					1	3	2	3		
3	3	3	2	3		1		1				2		3	2	
4	3	2	1	2		2					1	3	2		3	
5	3	2	3	3	3		1				2	3		3	2	
6	3	3	2	2	3		2		Э,	1	2	3		2		3
Average	3	2.5	2.1	2.4	3.0	2.2	1.5	1		ii - ii	2.3	2.8	2.3	2.6	2.3	3

PY3004

REGULATORY TOXICOLOGY

L T P C 3 0 0 3

OBJECTIVES:

The objective of the course is to

- Provide up-to-date information of the international, and national regulatory processes concerning chemical risk assessment in humans, biomaterials and medical devices.
- Develop awareness of how toxicology is applied in real world regulatory situations and to develop knowledge of the complexities and competing interests that are part of the regulatory decision making
- Know the methods used to evaluate risk and produce safety guidelines, including laboratory testing, epidemiological studies and evaluation of the literature and of the online resources available to gather this information.

UNIT I INTRODUCTION

9

Regulatory aspects and strategy in medical device and biomaterials safety evaluation. Regulations affecting cosmetic and over-the- counter drug products.

UNIT II REGULATIONS GOVERNING TOXICOLOGY

Aim and mission, working areas, regulatory process in toxicology, quality assurance in regulatory toxicology, toxicological risk assessment.

UNIT III TOXICOLOGY AND DRUG PRODUCT REGULATIONS

8

Introduction, aspects of the IND / NDA process, toxicology and other issues, paediatric drug products, drug combinations, excipients and reformulations, conclusions.

UNIT IV TOXICOGENEOMICS, GENETIC TOXICOLOGY AND REGULATORY POLICY10

Microarrays in toxicology, proteomics and metabolomics, case examples, toxicogenomics in regulatory environment. Initiation of genetic toxicology testing, ICPEMC, NTP, Genetic toxicology technologies and concepts. Influence of genetic toxicology research on regulatory policy, future role in safety testing strategies.

UNIT V ALTERNATIVES IN TOXICOLOGY

9

Introduction, Societal need for information about toxic chemicals, evolution of alternatives in toxicology, humane science and animal welfare, assessing alternatives, challenges and future.

TOTAL 45 PERIODS

TEXT BOOKS:

- Regulatory Toxicology. Eds. Franz XaverReichl and Michael Schwenk. Springer, 2014.
- 2. Shavne C. Gad, Regulatory Toxicology, Second Edition., CRC Press, 2001.
- 3. Toxicology and Regulatory Process. Sidney Green, CRC Press, 2006.

REFERENCES:

- 1. Regulatory Toxicology in the European Union, Ian Dewhurst, Royal Society of Chemistry, 2017
- 2. Regulatory Toxicology: Essentially Practical Aspects, Renuka Sengupta, Narosa Publishing House, 2015

COURSE OUTCOMES:

The student shall be able to

- Describe the general principles in toxicological risk assessment
- Apprehend both ecotoxicology, human toxicology, and Quality Assurance
- Understand the basic principles of and have current, cutting-edge knowledge in IND/NDA regulatory process.
- Demonstrate an understanding of Toxicogenomics
- Describe the Genetic Toxicology and ethical considerations relating to toxicology within the broader societal context
- Comprehend alternative options in toxicology.

				Pr	ograi	mmeO	utco	mes(F	PO)					gramı cific (O)		mes
Course	PO	PO	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS	PS
outcome	1	2 3 4 5 6 7 8 9 10 11 12 O1 O2 O3 O4														
CO 1	3	3 2 2 - 2														
CO 2	3		3	2			2					2	2		1	2
CO 3	3		3	2			2					2	2		1	2
CO 4	3		3	2			2					2	2		1	2
CO 5	3		1	2			2					2	2		1	2
CO 6	3		3	2			2					2	2		1	2
Average	3		2.7	2			2					2	2	-	1	2

PY3005

CLINICAL RESEARCH AND PHARMACOVIGILANCE

L T P C 3 0 0 3

OBJECTIVES:

- give an opportunity to learn the different types and designs of clinical trials, requirements for conducting clinical trials, an opportunity to conceptualize, conduct, manage and report clinical trials
- teach the students on conceptualizing, designing, conducting, managing, and reporting of clinical trials.
- focus on global scenario of pharmacovigilance in different methods that can be used to generate safety data.
- teach the students in developing drug safety data in pre-clinical, clinical phases of drug development and post market surveillance

UNIT I REGULATORY PERSPECTIVES OF CLINICAL TRIALS

(

Origin and Principles of International Conference on Harmonization – Good Clinical Practice (ICH-GCP) guidelines; Ethical Committee: Institutional Review Board, Ethical Guidelines for Biomedical Research and Human Participant-Schedule Y, ICMR, the Informed Consent Process: Structure and content of an Informed Consent Process, Ethical principles governing informed consent process.

UNIT II CLINICAL TRIALS- TYPES AND DESIGN

(

Experimental Study- Randomised Clinical Trials and Non Randomised Clinical Trials, Observation Study: Cohort, Case Control, Cross sectional; Roles and responsibilities of Clinical Trial Personnel: Investigator, Study Coordinator, Sponsor, Contract Research Organization and its management.

UNIT III CLINICAL TRIAL DOCUMENTATION

9

Guidelines to the preparation of documents, Preparation of protocol, Investigator Brochure, Case Report Forms, Clinical Study Report, Clinical Trial Monitoring - Safety Monitoring in CT, Adverse Drug Reactions: Definition and types. Detection and reporting methods. Severity and seriousness assessment, predictability and preventability assessment. Management of adverse drug reactions.

UNIT IV BASIC ASPECTS/TERMINOLOGIES OF PHARMACOVIGILANCE

9

History and progress of pharmacovigilance, Significance of safety monitoring, Pharmacovigilance in India and international aspects, WHO international drug monitoring programme, WHO and Regulatory terminologies of Adverse Drug Reactions, evaluation of medication safety, Establishing pharmacovigilance centres in Hospitals, Industry and National programmes related to pharmacovigilance.

UNIT V METHODS. ADR REPORTING. TOOLS FOR PHARMACOVIGILANCE

International classification of diseases, International Non-proprietary names for drugs, Passive and Active surveillance, Comparative observational studies, targeted clinical investigations and Vaccine safety surveillance. Spontaneous reporting system and Reporting to regulatory authorities, Guidelines for ADRs reporting. Argus, Aris G Pharmacovigilance, VigiFlow, Statistical methods for evaluating medication safety Data.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to.

- CO1 apply the knowledge of the regulatory requirements for conducting clinical trials.
- CO2 apply the knowledge of different clinical trial designs in conducting clinical trials.
- CO3 explain the responsibilities of key players involved in clinical trials and execute safety monitoring, reporting, close-out activities etc.
- CO4 elucidate the principles of pharmacovigilance and detect new adverse drug reactions and their assessment.
- CO5 comprehend the various pharmacovigilance methods and reporting systems.
- CO6 analyze and compare the data generated during clinical research and pharmacovigilance study.

TEXT BOOKS:

- 1. Textbook of Clinical Trials edited by David Machin, Simon Day and Sylvan Green, 2nd edition, 2006, John Wiley and Sons.
- 2. A textbook of Clinical Pharmacy Practice: Essential Concepts and Skills. Second Edition, 2012, University Press
- 3. Central Drugs Standard Control Organization- Good Clinical Practices, Guidelines for Clinical Trials on Pharmaceutical Products in India. New Delhi: Ministry of Health; 2001.
- 4. International Conference on Harmonization of Technical requirements for registration of Pharmaceuticals for human use. ICH Harmonized Tripartite Guideline. Guideline for Good Clinical Practice. E6(R2): NOV 2016
- 5. Ethical Guidelines for Biomedical Research on Human Subjects 2006 (Revised). Indian Council of Medical Research, New Delhi.
- 6. Textbook of Pharmacovigilance: Concept and Practice. G. P. Mohanta and P. K. Manna. 2016, Pharma Med Press.

REFERENCES:

- 1. Clinical Data Management edited by R K Rondels, S A Varley, C F Webbs. Second Edition, Jan 2000, Wiley Publications.
- 2. Handbook of Clinical Research. Julia Lloyd and Ann Raven Ed., 1994 Churchill Livingstone.
- 3. Principles of Clinical Research edited by Giovanna di Ignazio, Di Giovanna and Haynes, 2001
- 4. Blaisdell, Peter, "Twenty First Century Pharmaceutical Development", Interpharm Press, 2001.
- 5. Gad, Shayne C. "Drug Safety Evaluation", John Wiley & Sons, 2016.

COURSE OUTCOMES		PRO	GRA	MM	E OU	тсо	MES	(PO)					SPE	GRAI CIFIC		SO)
	1	2 3 4 5 6 7 8 9 10 1 12 1 2 3														
CO 1	-	1	2	2	1	2	1	-	2							
CO 2	2	2	2	2	1	1	1	1	2	-	2	1	2	-	-	2
CO 3	-	1	1	1	-	1	1	3	2	-	2	2	1	-	-	2
CO 4	2	2	2	2	1	2	2	2	-	-	-	2	2	-	-	2
CO 5	1	1	1	1	2	1	1	-	-	-	-	1	1	-	-	1
CO 6	2	2	2	2	1	1	1	-	-	-	-	1	2	-	-	1
OVERALL CO	1.75	1.5	1. 7	1. 7	1. 4	1. 3	1.2	2.3	2		2	1.3	1.7	1	-	1.7

PY3006

TECHNOLOGY OF FINE CHEMICALS AND BULK DRUGS

L T P C 3 0 0 3

OBJECTIVES

This course aims to

- Understand the basic concept of bulk drug and their intermediates involved in the manufacture.
- Understand the diverse aspects in bulk drug industry like unit processes, equipments used and process optimization.
- Acquire the knowledge on plant design, process development and chemical hazards in fine chemical and bulk drug industry.

UNIT I INTRODUCTION OF FINE CHEMICALS AND BULK DRUGS

9

Concept of fine and Bulk drugs and their salient features – Evolution of process – Process chemistry – Research and development strategies in pharmaceutical industries, Chemical process life cycle, Legislative requirements for safe process development and scale up.

UNIT II PRODUCTION, PLANNING AND CONTROL

9

Flow sheets – Types of flow sheets – Flow symbols – Line symbols – Concept of all purpose and multipurpose plants – Plant design – Layout — Process economics – Materials of construction – Effluent minimization and control and solvent recovery for fine chemicals and bulk drugs.

UNIT III PROCESS DEVELOPMENT AND HAZARDS

ć

Developing the best synthetic route; Selection of the best route for scale-up, Choice of raw materials and reagents, Development techniques for safe process design, Effect of process variables on yield and quality of products, Unit operations posing particular hazards during development, Strategies for chemical hazards assessment, Hazards of gas and vapor generation, Identification of highly-energetic materials.

UNITIV BASE CHEMICALS, DRUG INTERMEDIATES AND FINE CHEMICAL PRODUCTION 9

Manufacture of following chemicals and their applications – Sulphuric acid – Caustic soda – Ammonia – Phenol – Industrial alcohol - Urea – Acrylonitrile – Ethyl acetate – Butadiene – Aniline – Titanium dioxide – Vanillin.

UNITY BULK DRUGS PRODUCTION

9

Raw Materials – Production Techniques – Reaction Flow Sheet – Equipments Utilities for the production of drugs below – Paracetamol – Aspirin – Ibuprofen – Diazepam, Vitamin C – Salbutamol – Ranitidine – Sulphamethoxazole – Cephalosporins – Erythromycin, Chloramphenicol, Sulfathiazole

TOTAL: 45 PERIODS

Course outcomes: The student will be able to

- **CO.1** Apply legislative requirements and obtain official approval of the regulatory authorities for safe process development and scale up of fine chemicals and bulk drugs industries.
- **CO.2** Demonstrate the importance of flow sheets, flow symbols, plant design, layout and plant construction materials for the production of bulk drugs and fine chemicals and to implement the concept of effluent treatment and solvent recovery in pharmaceutical industries
- CO.3 Develop and optimize the best synthetic scheme and pilot plant procedure to manufacture compounds and to insist development techniques for safe process considering the hazard assessment
- **CO.4** Apply the knowledge of process chemistry in the production techniques of fine chemicals.
- **CO.5** Analyze the different process involved in bulk drug manufacturing chemical and manufacturing processes associated with the production of small molecule drugs.
- CO.6 Understand and apply the kinetics, thermodynamics and the concept of process economics in multipurpose plants

TEXT BOOKS:

- 1. Gopal Rao, M. and Sittig, M., "Dryden's Outlines of Chemical Technology", 3rd Edition, Affiliated East West Press Pvt. Ltd., 2001.
- 2. Austin, G.T., "Shreve's Chemical Process Industries", 5th Edition, McGraw Hill BookCompany, 2012.
- 3. Pandey, G.N., "A Text Book of Chemical Technology", Vol. II, Vikas Publishing House (P) Ltd., 2000.

REFERENCES

- 1. A. Cybulski, "Fine Chemicals Manufacture- Technology and Engineering Elsevier Publication, 2000
- 2. Stanley Nusim, "Active Pharmaceutical Ingredients" Informa Healthcare, 2009

Course Articulation Matrix

Course Outcome			F	Prog	ramr	meO	utco	mes	(PO)				,	Spe outc	amn cific ome SO)	;
Statements	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3		2			2	2	2			1		2		2	2
CO2	3		2	2	2	2	2	2			2				3	2
CO3	3	2	3	3	3	2	2	2	2			2	3	2		2
CO4	3	2	3	3	3	2	2	2			2	2	3	2	2	
CO5	3	2	2	3	3	2	2	2			2	2	3	2		2
CO6	3	2		2	2	2	2	2			2	2		3	2	2
Overall CO	3	1.3	2	2.2	2.2	2	2	2	0.3		1.5	1.3	1.8	1.5	1.5	2

^{(1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively)

PY3007

PREFORMULATION TECHNOLOGY

L T P C 3 0 0 3

OBJECTIVES:

- To recognize the principles of preformulation
- To understand the role of preformulation in drug and formulation development.

UNIT I INTRODUCTION

8

Preformulation studies of drug substances, proteins and peptides- Fundamental and derived properties in preformulation profiling -Preformulation worksheet.

UNIT II ROLE OF PREFORMULATION IN FORMULATION DEVELOPMENT

8

Preformulation as a support for formulation development- identification of 'developmental challenges' during pharmaceutical development - dosage form specific studies.

UNIT III SALT SELECTION

8

Role of salt selection in drug discovery and development - theoretical concepts for selection of counter ions for salt formation- 'pKa rule' for salt formation- decision tree for salt selection-appropriate case studies.

UNIT IV SOLUBILIZATION

9

Solubility and solubilization of non-electrolyte- drug solubilization in surfactant systems -use of cosolvents for development of liquid formulations-solid state manipulations including use of metastable solid forms like amorphous state.

UNIT V OPTIMIZATION TECHNIQUES IN PHARMACEUTICAL FORMULATION AND PROCESSING

12

Introduction- optimization parameters- statistical design-response surface method, contour diagrams, factorial design, partial factorial design, simplex methods, mixture designs, and Box Benken method- applications in pharmaceutical formulation.

TOTAL:45 PERIODS

TEXT BOOKS

- 1. Mark Gibson, Pharmaceutical Preformulation and Formulation, A Practical Guide from Candidate Drug Selection to Commercial Dosage Form, 2nd Edition, CRC Press, 2009
- 2. James I. Wells. Ellis Horwood, Pharmaceutical preformulation: The physicochemical properties of drug substances.
- 3. Aulton's Pharmaceutics, The Design and manufacture of Medicines, Churchill Livingstone Elsevier, 2013.

REFERENCES

- Ram I. Mahato, Ajit S. Narang, Pharmaceutical Dosage Forms and Drug Delivery, CRC Press. 2007
- 2. Simon Gaisford, Mark Saunders, Essentials of Pharmaceutical Preformulation, John Wiley & Sons, 2012

COURSE OUTCOMES:

The students will be able to

- Apprehend the principles of preformulation
- Demonstrate the role of preformulation in Formulation
- Comprehend the strategy of salt selection of drugs
- Understand the solubilisation role in preformulation
- Know the optimization techniques
- Give an overview of preformulation in drug development and formulation

Course articulation matrix

Course outcome Statement				Pro	gra	mn	ne (Out	con	пе			Pro	_	me Spe	cific
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3		3	2			2					2	2		-	2
CO2	3		3	2			2					2	2		1	2
CO3	3		3	2			2					2	2		1	2
CO4	3		3	2			2					2	2		1	2
CO5	3		1	2			2					2	2		1	2
CO6	3		3	2			2					2	2		1	2
Overall CO	3		2.7	2			2					2	2		0.8	2

^{(1, 2}and3arecorrelationlevelswithweightingsasSlight (Low), Moderate(Medium)and Substantial (High) respectively.)

PY3008 MANUFACTURING TECHNOLOGY OF DOSAGE FORMS

LT P C 3 0 0 3

OBJECTIVES:

The course aims to,

- Impart the knowledge of the various types and stages of process of liquid and sterile pharmaceutical products.
- Understand the principles of formulating Parenterals and ophthalmics.

UNIT I INTRODUCTION TO LIQUIDS

ç

Liquid dosage forms: Types, Advantages and disadvantages of liquid dosage forms. Excipients used in formulation of liquid dosage forms. Solubility enhancement techniques

UNIT II MONOPHASIC LIQUIDS

9

Definition, preparation and evaluation of Gargles, Mouthwashes, Throat Paint, Eardrops, Nasal drops, Enemas, Syrups, Elixirs, Liniments and Lotions

UNIT III PARENTERALS

9

Introduction, historical perspective - parenteral routes of administration - formulation additives. Small volume parenterals - large volume parenterals - packaging - labelling - storage of injections...

UNIT IV STERILIZATION

9

Sterilization methods – Steam - Dry heat – Filtration – Gas - Ionizing radiation with their advantages and disadvantages, Validation of sterility, Particulate contamination.

UNIT V OPHTHALMICS

9

Absorption of drugs in the eye - raw materials - ocular penetration enhancers - general safety consideration. Formulation of various ophthalmic products with their characterization.

TOTAL:45 PERIODS

OUTCOMES:

At the end of the course the students will be able to

CO1 Acquire the concepts of liquid dosage form

CO2 Attain the knowledge of liquid dosage form preparation

CO3 Acquire the concepts in the formulation of parenterals

CO4 Get the knowledge of sterilisation process for the sterile products

CO5 Know the technology used in the formulations of ophthalmic products

CO6 Acquire the knowledge of pharmaceutical liquid and sterile products manufacturing.

TEXT BOOKS:

- 1. Loyd V. Allen, Howard C. Ansel, Pharmaceutical Dosage Forms and Drug Delivery Systems, 10thEdition, Wolters Kluwer Health 2013.
- 2. Roop K. Khar, SP. Vyas "Lachman/Liebermans: The Theory and Practice of IndustrialPharmacy", 4th Edition, CBS Publishers and Distributors 2013.

REFERENCES:

- 1. James Swarbrick "Encyclopedia of Pharmaceutical Science and echnology",4thEdition, CRC Press. 2012.
- 2. Sandeep Nema, Nema Sandeep, John D "Pharmaceutical Dosage Forms: Parenteral Medications", 3rd Edition, Informa Healthcare 2010.
- 3. David B. Troy, Paul Beringer, Remington: The science and practice of pharmacy, 21st Edition, Lippincott Williams and Wilkins, 2006

Course articulation matrix

Course outcome Statement			(P	rog	ramn	ne (Out	con	пе	1		Prog	gramn Outo	ne Spe come	ecific
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3	1					1						1	00200		
CO2	3	1					1			-	7	1	1			
CO3	3	1		۲.			1				٠.	4	1			
CO4	3	1	7			1	1						1			
CO5	3	1					1						1			
CO6	3	1				1	1						1			
Overall CO	3	1				0.3	1						1			

PY3009 INDUSTRIAL PROCESS AND SCALE UP TECHNIQUES

LT P C 3 0 0 3

OBJECTIVES

- To develop the concepts of pilot plant and scale-up techniques in industrial processes
- To know the principle, design, methods, and equipment involved in scale up processes

UNIT I PILOT PLANT AND SCALE-UP TECHNIQUES

9

Pharmaceutical Pilot plant – Pilot plant design – Case studies for tablets – Capsules – Aerosols – Liquid orals – Parenterals – Sustained release preparation – Semi-solid preparation – Basic requirements – Design of product – Facility – Equipment selection and personnel.

UNIT II PRINCIPLE

9

Principle of similarity – Dimensional analysis – Scale up equations – Extrapolations – Analog models.

UNIT III DESIGN

9

Pilot plant design for flow ducts – Mixing equipments – Heat transfer equipments.

UNIT IV METHODS

9

Design methods for packed towers – Batch and continuous distillation columns.

UNIT V EQUIPMENTS

9

Pilot plants for reactors – Furnaces – Filters and mechanical operations equipments.

TOTAL:45 PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to.

- CO1 Acquire the knowledge of pilot plant scale-up techniques for pharmaceutical products
- CO2 Describe the principle behind the industrial scale –up process
- CO3 Explains pilot plant design for flow, mixing and heat transfer equipments
- CO4 Attain the knowledge of design methods for distillation columns.
- CO5 Acquire the knowledge of filters and mechanical operations equipments.
- CO6 Apply the knowledge of industrial process and scale –up techniques.

TEXT BOOKS:

- 1. Bisio, A. and Kabel, R.L., "Scale Up of Chemical Processes", John Wiley Publishers, 1990.
- 2. Johnstone, R.E. and Thring, M.W., "Pilot Plants Models and Scale Up Methods in Chemical Engineering", McGraw Hill Book Co., 1987.

REFERENCES:

- 1. Ernest, J. and Staffin, K.H., "Stage-wise Process Design", John Wiley Publications, 1989.
- 2. Levin, M., "Pharmaceutical Process Scale-Up", Informa Healthcare, 2002.
- 3. Hynes, M.D., "Preparing for FDA Pre-approval Inspections", Informa Healthcare, 1998.

Course articulation matrix

Course outcome Statement		N	7	Pr	ogr	am	me	Ou	tco	me		N	Prog		ne Sp come	ecific
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3		2			1	1						2	1		
CO2	3		2			1	1						2	1		
CO3	3		2			1	1						2	1		
CO4	3		2			1	1						2	1		
CO5	3		2			1	1						2	1		
CO6	3	À	2			1	1						2	1		
Overall CO	3		2			1	1						2	1		

PY3010

NOVEL DRUG DELIVERY SYSTEMS

LTPC 3 0 0 3

OBJECTIVES:

To enable the students to

- Understand the properties of polymer and its significance in drug delivery systems.
- Interpret physicochemical properties of the drug with the drug delivery system modules.
- Apply the concepts of newer method of drug delivery systems involved in the pharmaceutical sciences and relevance of their drug delivery strategies.

UNIT I POLYMERS

9

Polymers used in controlled drug delivery modules – Classification – Advantages and disadvantages of polymers – Polymer Characterisation - Various classes of controlled release systems.

UNIT II CONTROLLED RELEASE FORMULATIONS

9

Introduction, concept, advantages and disadvantages. Physicochemical and physiological properties of drugs influencing design of oral controlled drug delivery systems.

UNIT III TRANSDERMAL DRUG DELIVERY SYSTEMS

g

Permeation through skin – factors affecting permeation – basic components of TDDS – permeation enhancers – formulation approaches used in development of TDDS and their evaluation.

UNIT IV TARGETED DRUG DELIVERY SYSTEMS

9

Concepts – Advantages and disadvantages – Nanoparticles – Liposomes – Dendrimers – Magnetically modulated drug delivery.

UNIT V DRUG DELIVERY LARGE MOLECULES

9

Delivery system for Peptides and Proteins – Delivery strategies of nucleic acids – Antibodies and siRNA.

TOTAL:45 PERIODS

COURSE OUTCOMES:

- 1. Understands the properties, importance and influence of polymers in novel drug delivery systems.
- 2. Gains the importance of various physicochemical and biological properties of the drug with the drug delivery systems.
- 3. Discuss the concepts of transdermal drug delivery systems.
- 4. Relate the importance of various targeted drug delivery systems.
- 5. Illustrate the concepts of large molecules based delivery systems.
- 6. Apply the knowledge in developing various drug delivery modules

TEXT BOOKS:

- 1. Controlled drug delivery Concepts and Advances. Vyas SP, Rook K Khar, First edition, 2002, Vallabh Prakashan, New Delhi.
- 2. Vyas S.P., Khar R.K, "Targeted & Controlled Drug Delivery: Novel Carrier Systems", CBSPD, 2006.
- 3. Controlled and Novel Drug Delivery, Jain N.K. 2019. CBS Publishers, New Delhi.

REFERENCES:

- 1. Vasant Ranade, Mannfred A Hollinger "Drug delivery systems" II ed , CRC Press.
- 2. Novel Drug Delivery Systems, 2nd Yie. W. Chien. CRC Press.

Course Articulation Matrix

Course Outcome Statement			Р	rogi	ram	me(Outo	come	s(P	O)			Progi	m	Specific es SO)	Outco
S	1	2	3	4	5	6	7	8	9	1	1	1 2	1	2	3	4
CO1		3	3					ΚV	v	J	Ň	ŧŪ	3	UUL	2	
CO2	3			2				1	1	1				2		
CO3			2	2												
CO4	3		2		2		2									
CO5		2						2					3	3		
CO6		3			2						2	2	3		3	
OverallC O	3	2. 7	2. 3	2	2		2	1. 5	1	1	2	2	3	2.5	2.5	-

PY3011 PHARMACEUTICAL PACKAGING TECHNOLOGY

LTPC 3003

OBJECTIVE:

To instill the cognizant of packaging technology and its requirements in pharmaceutical products.

UNIT I PHARMACEUTICAL PACKAGING AND LABELLING

q

Introduction of packaging - classification of packaging - packaging essential requirements functions of packaging - importance / significance of pharma packaging - main packaging materials - ideal package material properties - Label functions - types - label substrate materials - legal requirements of labels

UNIT II PRIMARY PACKAGING MATERIAL

9

Glass containers- introduction - selection of glass as packaging materials for the pharmaceutical products - properties of glass - production of glass - types of glass - test for glass containers advantages and disadvantages of glass containers. Metals containers- aluminium - aluminium foil - collapsible tubes and stainless steel. Polymers -and plastics- introduction to plastics - raw materials of plastics - types of plastics - resin identification code - plastics and packaging and testing of plastic containers.

UNIT III SOLID DOSAGE FORM PACKAGING

9

Blister package- introduction to blister package - types of blisters - advantages and disadvantages of blister packaging - types of problems/ defects. Strip package- strip Packaging Process - packaging materials - child-resistant and multi-dose strip packaging - tamper evident packaging-intelligent packaging.

UNIT IV LIQUID FORMULATION AND STERILE PRODUCT PACKAGING

9

Liquid Formulation - Factors influencing selection of liquid filling machinery - balanced and unbalanced constant level filling – volumetric – gravimetric - level sensing - time fill - peristaltic and overflow liquid filling machinery. Sterile product packaging- various types of containers used for sterile products like ampoules – vials - bottles for I.V. fluid, etc. Types of closures used for the sterile products. Sterile product filling and sealing machinery i.e. ampoule filling and sealing machine.

UNITY QUALITYCONTROL AND REGULATIONS OF PACKAGING MATERIALS 9 Specifications—quality control tests—methods and evaluation of packaging of materials—stability of

Specifications—quality control tests—methods and evaluation of packaging of materials— stability of packaging materials—law and regulations governing packaging.

TOTAL:45 PERIODS

COURSE OUTCOMES:

The student will be able to

- 1. Understand the various categories of packaging materials used in pharmaceutical industry.
- 2. Differentiate proper packaging materials for different pharmaceutical dosage forms.
- 3. Select and evaluate the appropriate packaging materials for the different dosage forms.
- 4. Recognize the factors influencing the packaging of liquid and sterile products.
- 5. Understand the regulations of the packaging materials.
- 6. Excel in the technology of pharmaceutical packaging process

TEXT BOOKS:

- 1. 1.Textbook of Pharmaceutical Packaging Technology. Kaushik A.Chaurasia B. Dakar V. First Edition. CBS Publishers New Delhi. 2019
- 2. D.A. Dean, E.R. Evans, I.H. Hall, "Pharmaceutical Packaging Technology", Taylor and Francis, 2000.
- 3. Edward J. Bauer, Pharmaceutical Packaging Handbook. CRC Press, 2009.

REFERENCES:

1. Anonymous, "Quality Assurance of Pharmaceuticals: A Compendium of Guidelines and Related Materials", 2nd Edition, World Health Organization, 2004.

- 2. U.K. Jain, D.C. Goupale, S. Nayak, "Pharmaceutical Packaging Technology", 2nd ed., Pharma Med Press. Hvderabad. 2008.
- 3. Remington: The Science and Practice of Pharmacy. 21st ed., 2005.
- 4. James Swarbrick, "Encyclopedia of Pharmaceutical Science and Technology", 4th ed., CRC Press, 2013.

Course Articulation Matrix

Course Outcome Statements			Pr	ogra	ımm	eOut	tcom	es(P	O)					Spe	amn cific ome SO)	;
	1	2	3	12	1	2	3	4								
CO1	3	3											3			
CO2	3	2												2		
CO3		11	2	2					1					2		
CO4		1	2	2	2		V			//			2			
CO5	3	//					2	3		A.			26			
CO6	3	3	37		2		7/	-		1	N		2			
Overall CO	3	2.6	2	2	2	-	2	4		W	1		2.3	2	-	-

VERTICAL 3 QUALITY CONTROL AND QUALITY ASSURANCE

PY3012

BIOLOGICAL SPECTROSCOPIC TECHNIQUES

LTPC 3 0 0 3

OBJECTIVES:

- To deliver the knowledge of spectroscopic techniques and its functions
- To provide the technical information of spectroscopy for biological applications

UNIT I EXTRACTION OF DRUGS FROM THE BIOLOGICAL MATRIX

9

Introduction – types of samples - sampling – physicochemical properties of drug – sample pretreatment in different biological matrices - sample preparation - methods of extraction – liquid liquid extraction – solid phase extraction – Protein precipitation method- solid phase microextraction.

UNIT II GAS CHROMATOGRAPHY

9

Principle of separation – criteria for compounds - carrier gas – flow regulatory – injection devices – column – temperature control device – detectors – recorders and integrators –parameters used in GC – Application of GC.

UNIT III X-RAY DIFFRACTION

9

Scattering by x- rays – diffraction by a crystal – measuring diffraction pattern – Bragg reflection – unit cell – phase problem – anomalous diffraction – determination of crystal structure – electron and neutron diffraction.

UNIT IV BIOANAYTICAL METHOD DEVELOPMENT AND VALIDATION

9

Key steps for analytical method development - General principles - ligand binding assays - incurred sample reanalysis - practical and cross validation - additional consideration.

UNIT V MICROSCOPIC TECHNIQUES AND HIGH THROUGHPUT SCREENING

Electron microscopy – transmission and scanning electron microscopy – scanning tunnelling and atomic force microscopy – combinatorial chemistry and high throughput screening methods.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the student would be able to

- 1. Understand and demonstrate the separation of drugs from the biological matrix.
- 2. Understand the basic principle and instrumentation methods of gas chromatography and its applications in pharmaceuticals.
- 3. Describe the theory and operation of X-ray diffraction; Determination of crystal structure of drug molecule.
- 4. Understand and demonstrate the key steps in analytical method development and validation.
- 5. Apply the techniques in material science for research, quality control and analysis.
- 6. Apply the theoretical knowledge of modern analytical tools, new screening methods for the estimation of micro and macro molecules.

TEXT BOOKS:

- Banwell, Colin N. and E.M. McCash. "Fundamentals of Molecular Spectroscopy" IVth Edition, Tata McGraw-Hill, 2017.
- 2. Aruldas, G. "Molecular Structure and Spectroscopy". IInd Edition, Prentice Hall of India,2007.
- 3. G.R. Naik. Applied biological engineering principles and practice. InTech, Croatia, 2012.
- 4. Williams, Dudley H. and Ian Fleming. "Spectroscopic Methods in Organic Chemistry". VIth Edition, Tata McGraw-Hill, 2007.

REFERENCES

- 1. ICH Harmonized Guideline BIOANALYTICAL METHOD VALIDATION M10.
- 2. Hammes, Gordon G. "Spectroscopy for the Biological Sciences". John Wiley, 2005. 80
- 3. Hobert H. Willard, "Instrumental Methods of Analysis", 7th Edition, CBS Publishers & Distributors, 2004.
- 4. Atkins P.W., "Physical Chemistry", 10th Edition, Oxford University Press India, 2014.

Course articulation matrix

			-		BIO	LOGIC	AL S	PECT	ROS	COP	Y					
				Prog	ramn	ne Out	come				//		Spe	Progra	mme bject	ives
Course outcom	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
CO1	3		2	1	1	2	1	2								
CO2	3	3	2	2	3		2		2			1	1	2	1	2
CO3	3		2	2	3		2						1	2	1	2
CO4	3	3	2	2	3		2		2			1	1	2	1	2
CO5	3		2	2	3		2						1	2	1	2
CO6	3	3	2	2	3		2		2			1	1	3	1	3
Overall CO	3	3	2	2	3		2		2			1	1	2.1 6	1	2.1 6

PY3013 QUALITY ASSURANCE IN PHARMACEUTICAL INDUSTRIES

LTPC 3 0 0 3

OBJECTIVE:

- > To understand the importance of cGMP aspects in a pharmaceutical industry.
- To understand the responsibilities of QA and QC departments.

UNIT I GOOD LABORATORY PRACTICE

9

Concept and evolution and scopes of Quality Control and Quality Assurance. Good Laboratory Practices: Scope of GLP, The principles of good laboratory practice, Test facility management, Quality assurance programme, protocol for conduct of non-clinical testing, CPCSEA guidelines.

UNIT II ANALYSIS OF RAW MATERIAL

9

Developing specification for new drug substances, new drug products and impurities as per ICH Q6 and Q3.

UNIT III IN-PROCESS QUALITY CONTROL

q

Laboratory control, testing and release for distribution, in-process control, water for pharmaceutical use, aseptic process control, deviation procedure, stability testing.

UNIT IV QUALITY ASSURANCE

9

Quality assurance of finished products - tablets, capsules, ointments, parenteral, creams according to Indian Pharmacopoeias.

UNIT V GUIDANCE FOR INDUSTRY PAT

9

Guidance development process and scope, process understanding-principles and tools – PAT tools-Risk based approach-Integrated systems approach-Real time release – strategy for implementation- PAT regulatory approach.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- 1. Apply GLP regulation in pharmaceutical manufacturing.
- Perform an experiment using modern equipment's in identifying the drug substance, drug products and impurities.
- 3. Design and develop process to ensure the critical systems in pharmaceutical industries and products.
- 4. Demonstrate the different assessments involved in the finished products.
- 5. Understand the principle and process involved in the process analytical technology
- 6. Understand the various regulations, modern methods and assessment techniques in maintaining the quality of the product in pharmaceutical industries.

TEXT BOOKS:

- 1. The Quality Management Sourcebook: An International Guide to Materials and Resources By Christine Avery; Diane Zabel, Routledge, 1997.
- 2. The Quality Toolbox, Second Edition, Nancy R. Tague, ASQ Publications.
- 3. Juran's Quality Handbook, Sixth Edition, Joseph M. Juran and Joseph A. De Feo, ASQ Publications.

REFERENCES

- 1. Root Cause Analysis, The Core of Problem Solving and Corrective Action, Duke Okes, 2009, ASQ Publications.
- 2. Good laboratory Practice Regulations Allen F. Hirsch, Volume 38, Marcel Dekker Series, 1989
- 3. The drugs and cosmetics act 1940 Deshpande, Nilesh Gandhi, 4 th edition, Susmit Publishers. 2006.
- 4. Sarker DK. Quality Systems and Controls for Pharmaceuticals. John Wiley & Sons; 2008

Course articulation matrix

		Q	UALI	ΓΥ AS	SURA	NCE	N PH	ARM	ACEL	JTICAL	_ INDU	STRIE	S			
				Pro	gramr	ne ou	tcome	9						spe	amme cific ctives	
Course outcom	1	2	3	12	1	2	3	4								
е																
CO1	3	3			3	3	2	2								
CO2			3	3	2							1		3	3	2
CO3			3	3	3	2			2	2		2			3	2
CO4	3	3			3	2			2	2		2	2	3	3	2
CO5	3		3	3	3	2	2		2	2	3.5	2	3	3	3	2
CO6	3	3	3	3	2	2	2		2	2		2	3	3	3	2
Overall CO	3	3	3	3	2.6	2	2		2	2		1.8	2.6 7	3	2.8 3	2

PY3014

AUDITS AND REGULATORY COMPLIANCE

LT PC 3 0 0 3

OBJECTIVE:

- To understand the importance and methodology of auditing.
- To prepare check list for audit process, audit report and regulatory compliance.

UNIT I INTRODUCTION – AUDIT

9

Objectives, Management of audit, Responsibilities, Audit checklist for drug industries, factory acceptance test (FAT), site acceptance test.

UNIT II VENDOR AUDIT & PRE-APPROVAL INSPECTIONS/INVESTIGATIONS 9

Vendor certification- Objectives, vendor appraisal, Vendor rating, Assessment of new vendor, vendor preferences, rewards system. Pre-Approval Inspections- Facility cGMP compliance and the capability to produce the product, Data accuracy and completeness, Laboratory methodology, manufacturing changes to approved drugs.

UNIT III AUDITING OF MICROBIOLOGICAL LABORATORY

9

Auditing the process, Product and process information, General areas of interest in the building raw materials, Water, Packaging materials.

UNIT IV AUDITING OF QUALITY ASSURANCE AND ENGINEERING DEPARTMENT

Quality Assurance Maintenance, Critical systems: HVAC – Purpose, life cycle, control during routine operation, Required Quality for Water for Pharmaceutical Purposes, Selection of Water for Pharmaceutical Purposes, Equipment and Components for Water System - Purposes of an Air Handling System, verification of air quality Cleanliness.

UNIT V QUALITY AUDIT AND REGULATORY COMPLIANCE

9

TOTAL: 45 PERIODS

Scope, objective, quality audit, periodic evaluation, self-inspection, quality audit – internal audit, external audit, regulatory audit, role of GMP audits in QC and QA, benefits of GMP audits, elements of a systemic audit.

COURSE OUTCOMES:

- 1. Perform the auditing in pharmaceutical industries.
- 2. Design and develop the check list for vendor auditing and inspection of the pharmaceutical industries.

- 3. Design and develop process in checking the microbial laboratory facility.
- 4. Perform and verify the critical engineering systems in pharmaceutical manufacturing area.
- 5. Demonstrate the different auditing process and prepare the compliance report for approval pharmaceutical products.
- 6. Understand the various auditing and inspection process to ensure the quality of the pharmaceutical product.

TEXT BOOKS:

- 1. Compliance Auditing for Pharmaceutical Manufacturers: A Practical Guide to In-Depth Systems Auditing by Karen Ginsbury, Gil Bismuth, CRC Press BSP Books, 2018.
- 2. Pharmaceutical Manufacturing Handbook, Regulations and Quality by Shayne Cox Gad. Wiley-Interscience, A John Wiley and sons, Inc., Publications. 2008.
- 3. Handbook of microbiological Quality control. Rosamund M. Baird, Norman A. Hodges, Stephen P. Denyar. CRC Press. 2000.

REFERENCES:

- 1. Laboratory auditing for quality and regulatory compliance. Donald C. Singer, Raluca-loana Stefan, Jacobus F. Van Staden. CRC Press (2008).
- 2. Pharmaceutical Process validation by Robert A. Nash, Alfred H. Wachter, Marcel Dekker Inc. 2003.
- 3. Pharmaceutical Vendors Approval Manual A Comprehensive Quality Manual for API and Packaging Material Approval by Erfan Syed Asif, CRC Press, 2021.

Course articulation matrix

				AUDI [*]	TING A	AND R	EGU	LATO	RY C	OMPL	IANCE					
				Prog	gramr	ne Ou	tcom	е						Spe	amme cific ctives	
Course outcom	1	2	3	12	1	2	3	4								
CO1	3		3		2		3		2							
CO2			3	3	2				2	2		2			3	2
CO3	3	3	3	3	7.	2	2		2	2		2		3	3	2
CO4		3	3	3	3				2	2		2	2		3	2
CO5	3	3	3	3	3				2	2		2	3	3	3	2
CO6	3	3	3	3	2		2		2	2		2	3	3	3	2
Overall CO	3	3	3	3	2.5	2	2	IGI	2	2	/15	2	2.6 7	3	3	2

PY3015

VALIDATION IN PHARMACEUTICAL INDUSTRIES

LTPC 3 0 0 3

OBJECTIVE:

- > To provide the basic fundamental knowledge about the flow properties of different types of fluids and its momentum balance.
- > To provide the knowledge about the various transporting and flow measurement and fluid machineries.

UNIT I CONCEPTS OF VALIDATION

9

Introduction – Regulatory basis for process validation – Total approach to pharmaceutical process validation – Pilot- scale up and process validation – Process validation order of priority – Process characterization and optimization techniques – Process validation as a quality assurance tool.

UNIT II EQUIPMENT VALIDATION

9

Introduction – Project Scope- Prequalification – Installation Qualification – Operation Qualification – Process qualification – Equipment Approval – change Control.

UNIT III CLEANING VALIDATION

g

Regulatory requirements— Multiplevs dedicated equipment— Uniquenatureof API–Multiple level approach to cleaning—Natureofcontaminants—Selectionofa worstcase—Cleaning techniques — Sampling — Analytical methods — Limits and acceptance criteria, documentation.

UNIT IV ANALYTICAL METHOD VALIDATION

9

Introduction —Premarketing activities in assay validation methods development- Validation on analytical procedures(Q2A) - Validation for a NDA, ANDA — Validation in the quality control laboratory and transfer of methods from one laboratory to another.

UNIT V PROCESS VALIDATION

9

Process validation as a quality assurance tool-General QA tools, purpose of process validation, Qualification activities, Process validation activities. Prospective process validation-Organization, documentation, product development, development of manufacturing capability, full scale production development, defining experimental programs, experimental design and analysis.

TOTAL : 45 PERIODS

COURSE OUTCOMES

- 1. Understand about the validation approach in pharmaceutical industries.
- 2. Perform the different equipment validation process for successful installation of equipment.
- Design and develop process in cleaning the equipment based on cleaning validation in pharmaceutical industries.
- Design, develop an experiment process using modern equipment tools in identifying the drug substances and products.
- 5. Demonstrate the different process and activities involved in the new product development.
- 6. Understand the various process and procedure to ensure the quality of the pharmaceutical product.

TEXT BOOKS:

- 1. R.A. Nash, A.H. Wachter, "Pharmaceutical Process Validation", 3rd ed., CRC Press, Taylor & Francis Group, 2003.
- 2. Y. Anjaneyulu, R.Maraya, "Quality Assurance and Quality Management in Pharmaceutical Industry", Pharma Book Syndicate, 2005.
- 3. J. P. Agalloco, F.J. Carleton, "Validation of Pharmaceutical Processes", 3rd ed., Informa Healthcare, NY, USA, 2007.

REFERENCES:

- 1. Michael Levin, Pharmaceutical Process Scale-Upll, Drugs and Pharm. Sci. Series, Vol. 157,2nd Ed., Marcel Dekker Inc., N.Y.
- 2. Pharmaceutical Equipment Validation: The Ultimate Qualification Handbook, Phillip A. Cloud, Interpharm Press
- 3. Analytical Method validation and Instrument Performance Verification by Churg Chan, Heiman Lam, Y.C. Lee, Yue. Zhang, Wiley Inter Science.

Course articulation matrix

			V	ALIDA	TION	IN PH	ARM	ACEU	ITICA	L IND	USTRI	ES				
				Prog	gramr	ne Ou	tcom	е						Spe	amme cific ctives	
Course outcom	1	2	3	11	12	1	2	3	4							
CO1	3	3						3	2							
CO2			3	3	2							1		3		
CO3			3		3	2	1						3	3	2	
CO4			3	3	3				2	1		2		3	3	
CO5			3	3					2			1	3		3	
CO6	3		3		2		2			1			3		3	2
Overall CO	3	3	3	3	2.5	2	1.5		2	1		1.3 3	3	3	2.8	2

PY3016

QUALITY MANAGEMENT SYSTEMS

L T P C 3 0 0 3

OBJECTIVE:

- To provide the basic fundamental knowledge and importance of quality in pharmaceutical products.
- Analysis the issues in quality and provides tools for quality improvement.

UNIT I QUALITY MANAGEMENT

g

Basics of Quality Management, Total Quality Management (TQM), Principles of Six sigma, ISO 9001 and ISO 14000, Pharmaceutical Quality Management – ICH Q10.

UNIT II QUALITY SYSTEMS

9

Personal hygiene, sanitation, training, calibration, cleaning and monitoring of equipment, packaging and labeling, product coding, documentation, inventory control, ware housing.

UNIT III QUALITY SYSTEM INSPECTION

q

Out of Specifications (OOS), Out of Trend (OOT), Complaints and evaluation of complaints, handling of returned goods and its disposal, product recalls, rejects and scrap disposal, annual product reviews, batch review and batch release, area clearance, line clearance.

UNIT IV QUALITY RISK ASSESSMENT

9

Quality risk management - Introduction, risk assessment, risk control, risk review, risk management tools, HACCP, risk ranking and filtering according to ICH Q9 guideline.

UNIT V QUALITY CULTURE DEVELOPMENT

9

TOTAL: 45 PERIODS

Quality by design – Definition, overview, elements of QbD program tools according to ICH Q8 (R2) quideline, measuring process control and quality improvement.

COURSE OUTCOMES:

- 1. Understand and develop different standards for the quality management.
- 2. Understand, design, develop and implement the systems in pharmaceutical industries.
- 3. Demonstrate and verify the process to ensure the product quality and quality systems.
- 4. Verify and assess the quality risk process and manage to ensure the products quality in the manufacturing.
- 5. Develop the quality culture by adopting new strategies for improving the process and quality of the product.
- 6. Understand the various standards, systems, process to ensure the quality of the product in

pharmaceutical industries.

TEXT BOOKS:

- 1. Good manufacturing procedure for Pharmaceuticals by Joseph D. Nally. Informa Health Care, NY, USA, 2007.
- 2. Good Manufacturing Practices for Pharmaceuticals: A Plan for Total Quality Controlby Sidney H. Wiliig, James R. Stoker, Dekker Series, 1997
- 3. Understanding, Managing and Implementing Quality Frameworks, Techniques and Cases, By Jiju Antony; David Preece, Routledge, 2002.

REFERENCES

- 1. cGMP Current Good Manufacturing Practices for Pharmaceuticals by Manohar A. Potdar and Ramkumar Dubey, Pharmamed Press / BSP Books, 2018.
- 2. ISO 9001, ISO 14001, and New Management Standards, by Inaki Heras-Saizarbitoria, Springer, 2018.
- 3. Good Manufacturing Practices for Pharmaceuticals by Graham P. Bunn, CRC Press, 2018.

Course articulation matrix

				(QUAL	TY M	ANAG	EME	NT S	YSTEN	1S					
		1		Pro	gramr	ne Ou	tcom	е	ò	Ų				Spe	ammo cific ctives	
Course outcom															3	4
CO1	01 3 3														3	2
CO2	3		3	3	2				2	2		2	3		3	2
CO3			3	3	2	2	2		2	2		2		3	3	2
CO4		3	3	3	3	2	2		2	2		2		3	3	2
CO5	3		3	3	3	2	2		2	2		2	3	3	3	2
CO6	3	3	3	3	2	2	2		2	2		2	3	3	3	2
Overall CO	3	3	3	3	2.4	2	2		2	2		2	3	3	3	2

PY3017 PRODUCT DEVELOPMENT AND TECHNOLOGY TRANSFER

L T PC 3 0 0 3

OBJECTIVE:

- > To understand the new drug substance development process.
- ➤ To understand the information to pilot plant scale up and technology transfer from R& D to manufacturing premises.

UNIT I PRINCIPLES OF DRUG DISCOVERY AND DEVELOPMENT

S

Development and informational content for Investigational New Drugs Application (IND), New Drug Application (NDA), Abbreviated New Drug Application (ANDA), Supplemental New Drug Application (SNDA), Scale Up Post Approval Changes (SUPAC), Post marketing surveillance, Product registration.

UNIT II PRE-FORMULATION STUDIES

Introduction/concept, organoleptic properties, purity, impurity profiles, particle size, shape and surface area, Solubility, Methods to improve solubility of Drugs; Surfactants & its importance, cosolvency. Techniques for the study of Crystal properties and polymorphism.

PHARMACEUTICAL PACKAGING **UNIT III**

Pharmaceutical packaging: Pharmaceutical dosage form and their packaging requirements, Pharmaceutical packaging materials, enteral Packaging, aseptic packaging systems, container closure systems, selection and evaluation of Pharmaceutical packaging materials.

PILOT PLANT SCALE TECHNIQUES

9

Concept, significance, pilot plant scale up activities – general consideration for solids, semisolids, liquid, its relevant documentation and contract manufacturing.

UNIT V TECHNOLOGY TRANSFER

TOTAL: 45 PERIODS

Scope, organization and management, production, quality control, premises and equipment, documentation, qualification and validation.

COURSE OUTCOMES

Understand the process in developing new drug substances.

- Perform an experiment using modern equipment to investigate the physicochemical properties of the drug substances.
- Design, develop and perform an experiment using modern equipment to evaluate the packing materials.
- 4. Demonstrate the different process and activities involved in the pilot plant scale up of the products.
- 5. Design and develop the process for successful transfer of the developed product.
- Understand the systems and process for the development and transfer of the product into the pharmaceutical industries.

TEXT BOOKS:

- 1. Computer Applications in Drug Discovery and Development by A. Puratchikody, S. Lakshmana Prabu, A. Umamaheswari, IGI Global Medical Information Science Reference,
- 2. The process of new drug discovery and development. I and II Edition (2006) by Charles G. Smith, James T and O. Donnell. CRC Press, Group of Taylor and Francis.
- 3. Pharmaceutical product development. Vandana V. Patrevale. John I. Disouza. MaharukhT.Rustomji. CRC Press, Group of Taylor and Francis.

REFERENCES

- Remingtons Pharmaceutical Sciences, by Alfonso & Gennaro, 19th Edn.(1995)OO2C Lippincott; Williams and Wilkins A Wolters Kluwer Company, Philadelphia.
- The Pharmaceutical Sciences; the Pharma Path way 'Pure and applied Pharmacy' by D. A Sawant, Pragathi Books Pvt.Juran's Quality Handbook, Sixth Edition, Joseph M. Juran and Joseph A. De Feo, ASQ Publications.
- Pharmaceutical Packaging technology by D.A. Dean. E.R. Evans, I.H. Hall. 1 st Edition (Reprint 2006). Taylor and Francis. London and New York.

Course articulation matrix

		PI	RODL	JCT DI	EVEL	ОРМЕ	NT A	ND TI	ECHN	OLOG	Y TRA	NSFE	R			
				Prog	ramn	ne Out	come	es							Spec tives	
Course outcom	1	2	12	1	2	3	4									
CO1	3	3	3	1	3	2		2								
CO2		3	3	3	2							1		3	3	2
CO3			3	3	3	2			2			1			3	2
CO4			3	3	3	2			2	2		2	3		3	2
CO5			3	3	3	2			2	2		2	3		3	2
CO6	3	3	3	3	3	2			2	2		2	3	3	3	2
Overall CO	3	3	3	3	2.8	2			2	2		1.5	3	2.6 7	3	2

VERTICAL 4 PHARMACEUTICAL INDUSTRIAL MANAGEMENT

PY3018 PHARMACEUTICAL PRODUCTION MANAGEMENT

LTPC 3 0 0 3

OBJECTIVE:

To make understand the process involved in the pharmaceutical industries and its management.

UNIT I PILOT PLANT AND SCALE-UP TECHNIQUES

۵

Pharmaceutical Pilot plant – Pilot plant Design – Theories of similarities – General considerations of pilot plant scaleup – Case studies for tablets – Capsules – Liquid orals – Parenterals – Sustained release preparation – Semi-solid preparation.

UNIT II FORMULATION PRODUCTION MANAGEMENT

9

Plant site selection and layout – Plant Material handling for various pharmaceutical products – Functions – Selection – Maintenance – Types – Different categories of Pharmaceutical Plant maintenance – Replacement analysis – Group and individual replacement.

UNIT III PRODUCTION, PLANNING, SCHEDULING AND FORECASTING

9

Production systems – Production department Personnel – Production process, routing, loading and Scheduling – Despatching of records – Production control.

UNIT IV MATERIAL MANAGEMENT

9

Materials – Quality and quantity – Value analysis – Purchasing – Centralized and decentralized – Vendor development – Buying techniques – Purchasing cycle and procedures – Stores management – Salvaging and disposal of scrap surplus – Selective inventory control – RQM and EOQ – Modern inventory management systems – Cost and savings in inventory – Evaluation of inventory performance.

UNIT V HUMAN RESOURCE MANAGEMENT

9

Human resource planning – Job analysis and design – Recruitment – Personnel selection – Orientation and placement – Training and development – Supervision – Performance appraisal – Remuneration and salaries – Compensation – Industrial relations – Motivation.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

The student will be able to

1. illustrate the general considerations of pilot plant scaleup

- 2. identify the various factors influencing for choosing a suitable location for pharmaceuticalplant and its construction
- 3. analyse the different categories of Pharmaceutical Plant maintenance
- 4. handle and execute various process of pharmaceutical product manufacturing and manage the materials and human resources.
- 5. measure performance in inventory management
- 6. apply the learned knowledge in the management of human resources

TEXT BOOKS:

- 1. Vidyasagar, G., "Pharmaceutical Industrial Management", 3rd Edition, Varghese Publications, 2001.
- 2. Subramaniam, C.V.S., "Textbook of Pharmaceutical Production Management", Vallabh Prakashan, 2000.

REFERENCES:

- 1. Lachman, L. and Liberman, H.A., "The Theory and Practice of Industrial Pharmacy", 3rd Edition, Varghese Publications, 1986.
- 2. Evans, J., Sweeny, A. and Wiliams, H "Applied Production and Operations Management", 3rd Edition, West Publishing Company Ltd., 1992.
- 3. Drucker, P.F., "Management (Task, Responsibility and Practices)", Allied Publication, 1993.

Course articulation matrix

Course outcome			47	Pro	gran	nme	e Oı	utco	ome		N	1		Progra		
	1	2	3	4	5	11	12	1	2	3	4					
CO1	2					3	3	3	2	3	3	2	1	-	3	
CO2	2	1				3	3	3	3	3	1	3	2	2	2	
CO3	2	1	2	2	3	3	3	3	3	2	3	3	2	3	3	
CO4		2	3	2	3	3	3	3	3	3	3	1	2	3	2	
CO5			2	2	3	3	3	3	3	3	2	3	1	3	3	
CO6	2		2		3	3	3	3	1	3	3	3	2	3	3	
Average CO	2	1.3	2.25	2	3	3	3	3	2.5	3	2.5	2	2.3	2.5	2.7	

PY3019 PHARMACEUTICAL SUPPLY CHAIN MANAGEMENT

LTPC 3003

COURSE OBJECTIVES

- To develop an understanding of basic concepts and role of Logistics and supply chain management in business.
- To understand how supply chain drivers play an important role in redefining value chain excellence of Firms.
- To develop analytical and critical understanding & skills for planning, designing and operations of supply chain.
- To understand, appraise and integrate various supply chain strategies.

UNIT I DEVELOPMENT OF SCM CONCEPTS

9

Concept of supply chain management, scope of SCM in Pharma Sector -Key decision areas – strategic. Supply Chain Management and Key components, External Drivers of Change. Dimensions of Logistics – The Macro perspective and the macro dimension – Logistic system analysis.

UNIT II SOURCING STRATEGY

9

Manufacturing management – make or buy decision – capacity management – Materials Management – choice of sources – procurement planning. Key Drivers and enablers in Supply Chain Management, Supply chain components, SC Strategy, Measures of Supply Chain Performance

UNIT III DISTRIBUTION STRATEGY

9

Choice of Market – network design – warehouse designed operation and distribution planning – transportation – packaging.

UNIT IV INVENTORY STRATEGY AND CHANNELS OF DISTRIBUTION

9

Demand forecasting – inventory planning – planning of stocking facilities – warehouse location allocation. Warehouse design and operations – inventory norms. Customer Service Strategy: Identification of Service needs, cost of services – revenue Management

UNIT V LOGISTICS IN SUPPLY CHAIN

9

Reverse Logistics, Networks in Reverse Logistics, Decision options in Reverse Logistics, Entities in Reverse Logistics, Small Intermediate logistics, Clinical trial Logistics

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On completion of this course, the students will be able to:

- 1. understand the fundamentals of elements and functions of supply chain, role of drivers and demand forecasting.
- 2. apply various techniques of inventory management and their practical situations.
- 3. analyze how supply chain decisions related to facility location can be applied to various industries and designing the supply chain.
- 4. describe warehousing management system and transportation practiced in various industries
- 5. analyse logistics and supply chain strategies to create value generation and utilise IT applications
- 6. measure supply chain performance using various models

TEXT BOOKS

- 1. Supply Chain Management in the Drug Industry Delivering Patient Value for Pharmaceuticals and Biologics by Hedley Rees · 2011.
- 2. The Supply Chain Management Casebook: Comprehensive Coverage by Chuck Munson 2013.

REFERENCES

- 1. Supply Chain Management: A Global Perspective by Nada R. Sanders · 2011
- 2. Supply Chain Science books by Wallace J. Hopp · 2011

Course outcome				Pro	gram	me	Ou	tco	me					rogra Spec)
	1	2	3	4	5	11	12	1	2	3	4					
CO1	2					3	3	1	-	2						
CO2	2	2	2	1	1	2	3	2	2	1						
CO3	1	1	3	2	3	3	3	3	3	2	3	3	1	3	3	
CO4		2	2	2	3	3	3	3	3	3	3	1	2	3	2	
CO5		1	2	2	3	3	3	3	3	3	2	3	1	3	2	
CO6	2		1		3	3	3	3	2	3	1	2	2	3	3	
Average CO	1.6	1.5	2	1.75	2.6	3	3	3	2.6	2.8	2.3	2.6	1.5	2.5	2.2	

SAFETY AND DISASTER MANAGEMENT

LTPC 3003

PY3020

OBJECTIVE:

- To provide comprehensive knowledge about the safety management, safety procedures and
 - handling techniques of the chemicals in Industry
- To ensure that students begin to understand the relationship between vulnerability, disasters, disaster prevention and risk reduction
- To enhance awareness of institutional processes in the country and
- To develop rudimentary ability to respond to their surroundings with potential disaster response in areas where they live, with due sensitivity

UNIT I INDUSTRIAL SAFETY

C

Concepts of safety – Hazard classification chemical, physical, mechanical, ergonomics, biological and noise hazards – Hazards from utilities like air, water, steam.

UNIT II HAZARD IDENTIFICATION AND CONTROL

9

HAZOP, job safety analysis – Fault tree analysis – Event tree analysis – Failure modes and effect analysis and relative ranking techniques – Safety audit – Plant inspection – Past accident analysis.

UNIT III RISK MANAGEMENT

g

Overall risk analysis – Chapains model, E and FI model– Methods for determining consequences effects: Effect of fire, Effect of explosion and toxic effect – Disaster management plan – Emergency planning – Onsite and offsite emergency planning – Risk management – Gas processing complex, refinery – First aids.

UNIT IV TYPES OF DISASTERS

ç

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Disasters: Types of disasters – Earthquake, Landslide, Flood, Drought, Fire etc - Classification, Causes, Impacts including social, economic, political, environmental, health, psychosocial, etc.- Differential impacts- in terms of caste, class, gender, age, location, disability - Global trends in disasters: urban disasters, pandemics, complex emergencies, Climate change- Dos and Don'ts during various types of Disasters.

UNIT V DISASTER MANAGEMENT: APPLICATIONS AND CASE STUDIES AND FIELD WORKS 9

Landslide Hazard Zonation: Case Studies, Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, ManMade disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

The student will be able to

- 1. illustrate the various aspects of industrial safety, hazard identification and control
- 2. highlight the various risk management systems in chemical industry.
- 3. describe safety procedure and handling of chemicals used in the various process.
- 4. differentiate the types of disasters, causes and their impact on environment and society
- 5. assess vulnerability and various methods of risk reduction measures as well as mitigation.
- 6. draw the hazard and vulnerability profile of India, scenarios in the Indian context, Disaster damage assessment and management process.

TEXT BOOKS:

- 1. **J Maiti, Pradip Kumar Ray (Editor)**., "Industrial Safety Management: 21st Century Perspectives of Asia, Kindle edition, Springer, 2019
- 2. Lees, F.P., "Loss Prevention in Process Industries", 4th Edition, Butterworth Heinemann, 2012.

3. Harsh K.GuptaDisaster Management, University Press, 2020

REFERENCES:

- 1. Geoff Wells, Hazard Identification and Risk Assessment, Butterworth-Heinemann, 1996
- 2. L. M. Deshmukh, Industrial Safety Management: Hazard Identification and Risk Control, 1st Edition, McGraw Hill Education (India) Private Limited, 2005
- 3. Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012.
- 4. Gupta Anil K, Sreeja S. Nair. Environmental Knowledge for Disaster Risk Management, NIDM, New Delhi, 2011
- 5. Kapur Anu Vulnerable India: A Geographical Study of Disasters, IIAS and Sage Publishers, New Delhi, 2010.

Course outcome		Programme Outcome 1 2 3 4 5 6 7 8 9 10 11											F	Progra Spea outc	cific	9
	1	2	3	4	5	11	12	1	2	3	4					
CO1				1.	2	3	3	3	2	3	3	3	1	-	2	
CO2	1	2	2	3	2	3	3	3	3	3	2	3	2	2	1	
CO3	3	1	3	2	2	3	3	3	3	3	3	2	1	3	3	
CO4	3	2	2	3		3	3	3	3	2	3	3	2	3	2	
CO5	3	1	2	1		3	3	3	3	3	2	3	1	3	2	
CO6	3		1		2	3	3	3	2	2	1	3	2	3	3	
Average CO	2.6	1.5	2	2	2	3	3	3	2.6	2.6	2.3	2.8	1.5	2.5	2.2	

PY3021

MANAGEMENT INFORMATION SYSTEM

LTPC 3 0 0 3

OBJECTIVE:

- To describe the role of information technology and decision support systems in business and record the current issues with those of the firm to solve business problems.
- To introduce the fundamental principles of computer-based information systems analysis and design and develop an understanding of the principles and techniques used.
- To enable students understand the various knowledge representation methods and different expert system structures as strategic weapons to counter the threats to business and make business more competitive.

UNIT I INTRODUCTION TO INFORMATION TECHNOLOGY

Q

Impact of IT on Individuals, Organisations and Society - Information Technology Developments and Trends- Role of IT in an Organisation - Information System Concept and Types - IT Infrastructure and Architecture- Emerging Computing Environments (SaaS, SOA, etc.).

UNIT II DATABASE MANAGEMENT AND ANALYTICS

Ç

File Management- Database Management Systems- Creating Databases- Data Warehousing-Marketing Databases - Webbased Data Management Systems- Big Data- Basic overview of Oracle/SQL - Network Computing.

UNIT III: ENTERPRISE INFORMATION SYSTEM

Ç

Enterprise Systems and Supply Chains – Need for ERP – ERP Integration Challenges - Business Process Management - Customer Relationship Management- Virtual Corporations- Cloud Computing - Application: basic SAP Tutorial.

UNIT IV: MANAGERIAL AND DECISION SUPPORT SYSTEMS

9

Knowledge Management Systems Implementation - Real-time Business Intelligence and Competitive Intelligence -Business Analytics - Online Analytical Processing - Business Performance Management, Scorecards and Dashboards- Types of Decision Support Systems-Intelligent Support Systems - Automated Decision Support (ADS) - Expert Systems.

UNIT V ESTABLISHING AND MANAGING IT SECURITY

9

Securing the enterprise; IS Vulnerabilities and Threats- Fraud and Computer Crimes- IT Security Management Practices-Network Security- Internal Control and Compliance Management-Business Continuity and Disaster Recovery Planning- Implementing Security: Auditing and Risk Management- Computer Forensics.

TOTAL 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, students will be able to:

- 1. Relate the basic concepts and technologies used in the field of management information systems:
- 2. Compare the processes of developing and implementing information systems.
- 3. Outline the role of the ethical, social, and security issues of information systems.
- 4. Translate the role of information systems in organizations, the strategic management processes, with the implications for the management.
- 5. Apply the understanding of how various information systems like DBMS work together to accomplish the information objectives of an organization.
- 6. Describe the theoretical models used in database management systems to answer business question

TEXT BOOKS

- 1. Efraim Turban, et al., (2013), Information Technology Management, Wiley, New Delhi.
- 2. Jawadekar, W.S., "Management Information Systems", Tata McGraw Hill Private Limited, New Delhi, 2009.
- 3. Kenneth C. Laudon and Jane P. Laudon: "Management Information Systems" 9/e, Pearson Education, New Delhi.

REFERENCE BOOKS

- Alex Leon and Mathew Leon: "Data Base Management Systems", Vikas Publishing House, New Delhi.
- 2. Goyal, D.P.: "Management Information System", MACMILLAN India Limited, New Delhi, 2008
- 3. James A. O'Brien et al.,(2013), Management Information System, McGraw Hill Education India.

Course outcome		th.	וטע	Pro	gran	nme	Οι	ıtcc	me	1 N	ΝV	W.	Spe	Progr ecific	amm outc	e ome
	1	2 3 4 5 6 7 8 9 10 1											1	2	3	4
CO1	2				2	3	3	3	3	3	3	3	1	-	2	1
CO2	3	2	1	3	2	3	3	3	3	3	2	3	1	2	1	2
CO3	2	1	3	2	2	3	3	3	3	3	3	2		3	3	1
CO4	2	2	3	3		3	3	3	3	1	3	3	1	3	2	2
CO5	1	1	3	1		3	3	3	3	3	2	3	1	3	2	1
CO6	2		3		2	3	3	3	3	2	1	3	1	3	3	2
Average CO	2	1.5	2.6	2	2	3	3	3	3	2.4	2.3	2.8	1	2.5	2.2	1.5

PY3022 INDUSTRIAL PSYCHOLOGY AND HUMAN RESOURCE MANAGEMENT

LTPC 3003

OBJECTIVES

- 1. This course equips students with human resource management skills
- 2. To be able to function effectively in their professional careers.
- 3. To develop their soft skills for organizational culture.

UNIT I INTRODUCTION AND OVERVIEW OF HUMAN RESOURCE MANAGEMENT 9 Introduction and Overview, Management Theories- Taylor, Fayol, Weber, Hawthorne; Basic types of structures; Span of Control, Delegation, Authority, Responsibility, Recruitment- Philosophies, Different methods of attracting candidates, Selection- Application blanks, Interviews, Induction

UNIT IIPERFORMANCE MANAGEMENT, TRAINING AND DEVELOPMENT

Performance management -Goal setting process, Performance appraisal methods, Appraisal interviews, Rating errors, Training & Development- Identifying training needs, Training methods (on the job and off the job techniques), Evaluation of training, Change Management- Types of change, Theories of change management, Hurdles to change, Olmosk change strategies

UNIT III KNOWLEDGE MANAGEMENT AND MOTIVATION

9

Knowledge management -Innovation, Importance and benefits of Knowledge Management, Framework, Motivation Theories-Classification of motives, Various theories (Maslow, Herzberg, ERG, Vroom, Equity and Nohria's 4 drive model)

UNIT IV LEADERSHIP AND ORGANIZATIONAL CULTURE

9

Leadership Theories- Blake Mouton model, Hersey Blanchard Model, Michigan Model, Organizational Culture-Types of cultures, Understanding and influencing cultures, Conflict Management- Stages of conflict, Types of conflict and sources of conflicts, Conflict resolution

UNIT V POWER, POLITICS, PERSONALITY AND PERCEPTION

9

Power &Politics- Bases of power, Politicking strategies, Personality- Theories of personality, Behaviour and personality styles, Perception- Perception versus sensation, Perceptual process, Perceptual errors

TOTAL: 45 PERIODS

OUTCOMES:

On completion of the course the students will be able to

- **CO1** Explain the fundamental concepts of industrial psychology and human resource management
- CO2 Analyze practical solutions.
- CO3 Provide applicable solutions
- CO4 Provide leadership qualities
- CO5 Enhance their Entrepreneurship skills
- CO6 Personality and behaviour development

TEXT BOOKS/

- 1. C.B Gupta, Management Theory & Practice, Sultan Chand & Sons, 19th Edition, 2017.
- 2. L.M Prasad, Principles and Practices in Management, Sultan Chand & Sons, 2015.
- **3.** Harold Koontz, Cyril O' Donnell & Heinz Weihrich, Essentials of Management, McGraw Hill, Inc., 5th Edition, 2017.

REFERENCES:

- 1. Innovation and Entrepreneurship, Peter Drucker, ASIN: 0060851139, Publisher: Harper Business; Reprint edition (9 May 2006), ISBN-13:978-0060851132.
- 2. Essentials of organizational Behaviour, Stephen P. Robbins, Publisher: Pearson; 14th edition (30 March 2017), ISBN-13: 978-0134523859.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs)

	PO	РО	РО	РО	PO	PO	РО	PO	РО	PO1	PO1	PO1	PSO	PSO	PSO
	1	2	3	4	5	6	7	8	9	0	1	2	1	2	3
CO 1	3	2	1	2	-	3	3	3	3	3	3	1	1	3	1
CO 2	3	3	1	3	2	3	2	3	3	3	1	2	2	3	ı
CO 3	3	3	2	3	2	3	3	3	3	3	3	2	3	2	1
CO 4	2	-	-	-	-	3	3	3	3	3	3	2	3	3	2
CO 5	1	1	-	-	-	2	3	3	3	3	3	1	3	3	3
CO 6	-	-	-	-	2	2	3	3	3	3	3	2	3	3	3

3, Strong Contribution; 2, Moderate Contribution; 1, Low Contribution;

PY3023 PROJECT MANAGEMENT FOR PHARMACEUTICAL TECHNOLOGY L T P C 3 0 0 3

UNIT I CONCEPTS OF PROJECT MANAGEMENT

9

Concepts of projects, characteristics of project, Phases of project life cycle, Tools and techniques for project management, Computer based project management. Project planning and estimating: Feasibility report, Preparation of cost estimation, Evaluation of the project profitability.

UNIT II TECHNICAL ANALYSIS

o

Study of material inputs and utilities, manufacturing process and technology, product mix, plant capacity, location and site, project charts and layouts, work schedule financial analysis: Estimation of cost of project and means of financing, estimates of sales and production, cost of production, working capital requirement and its financing. Estimates of working results, breakeven point. Project cash hours. Time value of money. Cost of capital appraisal criteria: Net present value. Benefit cost ratio. Internal rate of return, payback period. Accounting rate of return, Investment appraisal in practice.

UNIT III TOOLS AND TECHNIQUES OF PROJECT MANAGEMENT

ć

Bar (GANTT) chart, Networks – PERT and CPM, Applications, Basic steps in PERT/CPM, Rules for drawing network diagram, Labelling, Time estimates, Critical Path Method, Project Evaluation and Review Technique (PERT).

UNIT IV PERFORMANCE MEASURES IN PROJECT MANAGEMENT

9

Performance indicators, Performance Improvement, Project management and environment. Risk Analysis: Sources, measures and perspectives on risk, sensitivity analysis, scenario analysis, breakeven analysis, Hiller model, simulation analysis, decision tree analysis, managing risk, project selection under risk.

UNIT V FINANCING OF PROJECTS

9

TOTAL: 45 PERIODS

Capital structure, menu of financing, equity capital, internal accruals, term loans, debentures, working capital advance, miscellaneous sources, raising of venture capital, raising capital in international markets

COURSE OUTCOMES:

- 1. Identify characteristics of project and formulate Phases of project life cycle
- 2. estimate cost of project and means of financing

- 3. select, and apply the tools and techniques for project management.
- 4. measure the risk involved in a project and analyse the sensitivity, scenario of market using Information technology tools.
- 5. estimate of cost of project and means of financing, sales and production, cost of production, working capital requirement and its financing.
- 6. Plan human aspects of project management and pre-requisites for successful project implementation.

TEXT BOOKS

- 1. Project Management: Choudhry S., Tata McGraw-Hill,2010
- 2. Projects: Planning, Analysis, Financing, Implementation, and Review- Prasanna Chandra, 5th edition, Tata McGraw-Hill publishing company limited, 2005.
- 3. Operations Research- N V R Naidu, G. Rajendra, T Krishna kumar, I K international Publishing house, Pvt. Ltd. 2011.
- 4. Operations Research and Engineering Management, S. D. Sharma, Kedar Nath Ram Nath & Co., 2010
- 5. Bhavesh M. Patel, Project Management: Strategic Financial Planning, Evaluation and Control Patel Sangam Books Ltd, 2000.

REFERENCES

- 1. A Guide to the Project Management Body of knowledge PMBOK Guide 6th Edition, Project Management Institute 2017.
- 2. Project management a system approach to planning scheduling and controlling- Harold Kerzner, CBS Publisher and distributors, 2002.
- 3. A management guide to PERT and CPM- WEIST and LEVY Eastern Economy of PH 2002.
- 4. T R Banga, N K Agarwal and S C Sharma -Industrial engineering and Management Sciences, -KhannaPublishers.
- 5. United Nations: Industrial Development Organization's guide to Practical Project Appraisal Social Benefit Cost Analysis in Development Countries, publisher United Nations Industrial Development Organisation, 1986.

	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PSO 1	PSO 2	PSO 3
CO 1	3	2	1	2		3	3	3	3	3	3	1	3	3	-
CO 2	3	3	1	3	2	3	2	3	3	3	1 1.W.I	2	3	3	-
CO 3	3	3	1	3	2	3	3	3	3	3	3	2	3	2	1
CO 4	2	-	1	-	2	3	3	3	3	3	3	2	3	3	2
CO 5	2	2	2	-	-	2	3	3	3	3	3	1	2	3	3
CO 6	-	-	-	-	2	2	3	3	3	3	3	2	2	3	3
AV	2.4	2.5	1.2	2.6	2	2.6	2.6	3	3	3	2.8	1.6	2.4	2.8	1.4

MANDATORY COURSES I

MX3081 INTRODUCTION TO WOMEN AND GENDER STUDIES

LTPC 3 0 0 0

COURSE OUTLINE

UNIT I CONCEPTS

Sex vs. Gender, masculinity, femininity, socialization, patriarchy, public/ private, essentialism, binaryism, power, hegemony, hierarchy, stereotype, gender roles, gender relation, deconstruction, resistance, sexual division of labour.

UNIT II FEMINIST THEORY

Liberal, Marxist, Socialist, Radical, Psychoanalytic, postmodernist, ecofeminist.

UNIT III WOMEN'S MOVEMENTS: GLOBAL, NATIONAL AND LOCAL

Rise of Feminism in Europe and America.

Women's Movement in India.

UNIT IV GENDER AND LANGUAGE

Linguistic Forms and Gender.

Gender and narratives.

UNIT V GENDER AND REPRESENTATION

Advertising and popular visual media.

Gender and Representation in Alternative Media.

Gender and social media.

TOTAL: 45 PERIODS

MX3082 ELEMENTS OF LITERATURE

LTPC 3 000

OBJECTIVE:

 To make the students aware about the finer sensibilities of human existence through an art form. The students will learn to appreciate different forms of literature as suitable modes of expressing human experience.

1. COURSE CONTENTS

Introduction to Elements of Literature

1. Relevance of literature

- a) Enhances Reading, thinking, discussing and writing skills.
- b) Develops finer sensibility for better human relationship.
- c) Increases understanding of the problem of humanity without bias.
- d) Providing space to reconcile and get a cathartic effect.

2. Elements of fiction

- a) Fiction, fact and literary truth.
- b) Fictional modes and patterns.
- c) Plot character and perspective.

3. Elements of poetry

- a) Emotions and imaginations.
- b) Figurative language.
- c) (Simile, metaphor, conceit, symbol, pun and irony).
- d) Personification and animation.
- e) Rhetoric and trend.

4. Elements of drama

- a) Drama as representational art.
- b) Content mode and elements.
- c) Theatrical performance.
- d) Drama as narration, mediation and persuasion.
- e) Features of tragedy, comedy and satire.

3.READINGS:

- 1. An Introduction to the Study of English Literature, W.H. Hudson, Atlantic, 2007.
- 2. An Introduction to Literary Studies, Mario Klarer, Routledge, 2013.
- 3. The Experience of Poetry, Graham Mode, Open college of Arts with Open Unv Press, 1991.
- 4. The Elements of Fiction: A Survey, Ulf Wolf (ed), Wolfstuff, 2114.
- 5. The Elements of Drama, J.L.Styan, Literary Licensing, 2011.
- 3.1 Textbook:
- 3.2 *Reference Books:: To be decided by the teacher and student, on the basis of individual student so as to enable him or her to write the term paper.

4. OTHER SESSION:

- 4.1*Tutorials:
- 4.2*Laboratory:
- 4.3*Project: The students will write a term paper to show their understanding of a particular piece of literature

5.*ASSESSMENT:

- 5.1HA:
- 5.2Quizzes-HA:
- 5.3Periodical Examination: one
- 5.4Project/Lab: one (under the guidance of the teachers the students will take a volume of poetry, fiction or drama and write a term paper to show their understanding of it in a given context; sociological, psychological, historical, autobiographical etc.
- 5.5Final Exam:

TOTAL: 45 PERIODS

OUTCOME OF THE COURSE:

• Students will be able to understand the relevance of literature in human life and appreciate its aspects in developing finer sensibilities.

MX3083

FILM APPRECIATION

LTPC 3 000

In this course on film appreciation, the students will be introduced broadly to the development of film as an art and entertainment form. It will also discuss the language of cinema as it evolved over a century. The students will be taught as to how to read a film and appreciate the various nuances of a film as a text. The students will be guided to study film joyfully.

Theme - A: The Component of Films

- A-1: The material and equipment
- A-2: The story, screenplay and script
- A-3: The actors, crew members, and the director
- A-4: The process of film making... structure of a film

Theme - B: Evolution of Film Language

- B-1: Film language, form, movement etc.
- B-2: Early cinema... silent film (Particularly French)
- B-3: The emergence of feature films: **Birth of a Nation**
- B-4: Talkies

Theme - C: Film Theories and Criticism/Appreciation

- C-1: Realist theory; Auteurists
- C-2: Psychoanalytic, Ideological, Feminists
- C-3: How to read films?
- C-4: Film Criticism / Appreciation

Theme – D: Development of Films

- D-1: Representative Soviet films
- D-2: Representative Japanese films
- D-3: Representative Italian films
- D-4: Representative Hollywood film and the studio system

Theme - E: Indian Films

- E-1: The early era
- E-2: The important films made by the directors
- E-3: The regional films
- E-4: The documentaries in India

READING:

A Reader containing important articles on films will be prepared and given to the students. The students must read them and present in the class and have discussion on these.

COURSE OBJECTIVE

- To impart knowledge on concepts related to disaster, disaster risk reduction, disaster management
- To acquaint with the skills for planning and organizing disaster response

UNIT I HAZRADS, VULNERABILITY AND DISASTER RISKS

9

Definition: Disaster, Hazard, Vulnerability, Resilience, Risks – Types of Disasters: Natural, Human induced, Climate change induced –Earthquake, Landslide, Flood, Drought, Fire etc – Technological disasters- Structural collapse, Industrial accidents, oil spills -Causes, Impacts including social, Economic, political, environmental, health, psychosocial, etc.- Disaster vulnerability profile of India and Tamil Nadu - Global trends in disasters: urban disasters, pandemics, Complex emergencies, - -, Inter relations between Disasters and Sustainable development Goals

UNIT II DISASTER RISK REDUCTION (DRR)

9

Sendai Framework for Disaster Risk Reduction, Disaster cycle - Phases, Culture of safety, prevention, mitigation and preparedness community Based DRR, Structural- nonstructural measures, Roles and responsibilities of- community, Panchayati Raj Institutions / Urban Local Bodies (PRIs/ULBs), States, Centre, and other stakeholders- Early Warning System - Advisories from Appropriate Agencies.- Relevance of indigenous Knowledge, appropriate technology and Local resources.

UNIT III DISASTER MANAGEMENT

9

Components of Disaster Management – Preparedness of rescue and relief, mitigation, rehabilitation and reconstruction- Disaster Risk Management and post disaster management – Compensation and Insurance- Disaster Management Act (2005) and Policy - Other related policies, plans, programmers and legislation - Institutional Processes and Framework at State and Central Level- (NDMA –SDMA-DDMA-NRDF- Civic Volunteers)

UNIT IV TOOLS AND TECHNOLOGY FOR DISASTER MANAGEMENT

0

Early warning systems -Components of Disaster Relief: Water, Food, Sanitation, Shelter, Health, Waste Management, Institutional arrangements (Mitigation, Response and Preparedness, – Role of GIS and Information Technology Components in Preparedness, Risk Assessment, Response and Recovery Phases of Disaster – Disaster Damage Assessment. - Elements of Climate Resilient Development –Standard operation Procedure for disaster response – Financial planning for disaster Management

UNIT V DISASTER MANAGEMENT: CASE STUDIES

9

Discussion on selected case studies to analyse the potential impacts and actions in the contest of disasters-Landslide Hazard Zonation: Earthquake Vulnerability Assessment of Buildings and Infrastructure: Case Studies, Drought Assessment: Case Studies, Coastal Flooding: Storm Surge Assessment, Floods: Fluvial and Pluvial Flooding: Case Studies; Forest Fire: Case Studies, Man Made disasters: Case Studies, Space Based Inputs for Disaster Mitigation and Management and field works related to disaster management.- Field work-Mock drill -

TEXT BOOKS:

1 Taimpo (2016), Disaster Management and Preparedness, CRC Publications

- 2 Singh R (2017), Disaster Management Guidelines for earthquakes, Landslides, Avalanches and tsunami, Horizon Press Publications
- 3 Singhal J.P. "Disaster Management", Laxmi Publications, 2010. ISBN-10: 9380386427 ISBN-13: 978-9380386423
- 4 Tushar Bhattacharya, "Disaster Science and Management", McGraw Hill India Education Pvt. Ltd., 2012. **ISBN-10**: 1259007367, **ISBN-13**: 978-1259007361]

REFERENCES

- 1. Govt. of India: Disaster Management Act, Government of India, New Delhi, 2005.
- 2. Government of India, National Disaster Management Policy, 2009.
- 3. Shaw R (2016), Community based Disaster risk reduction, Oxford University Press

COURSE OUTCOME:

CO1: To impart knowledge on the concepts of Disaster, Vulnerability and Disaster Risk reduction (DRR)

CO2: To enhance understanding on Hazards, Vulnerability and Disaster Risk Assessment prevention and risk reduction

CO3: To develop disaster response skills by adopting relevant tools and technology

CO4: Enhance awareness of institutional processes for Disaster response in the country and

CO5: Develop rudimentary ability to respond to their surroundings with potential Disaster response in areas where they live, with due sensitivity

CO's - PO's & PSO's MAPPING

CO's	PO's												PSO'	s	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3	2	3	·	,	2	2	7-4		2	-	2	-	1
2	3	3	3	3	7	-	2	1	-	7	2		2	-	1
3	3	3	3	3	-	-	2	2	-		1-1	-	2	-	1
4	3	3	2	3	/-	-	2	1	-	-)	2		2	-	1
5	3	3	2	3		-	2	2	-	-	2	-	3	-	1
AVG	3	3	3	3	-	-	2	2	-		2	-	2	-	1

MANDATORY COURSES II

MX3085

WELL-BEING WITH TRADITIONAL PRACTICES-YOGA, AYURVEDA
AND SIDDHA
L T P C
3 0 00

COURSE OBJECTIVES:

- To enjoy life happily with fun filled new style activities that help to maintain health also
- To adapt a few lifestyle changes that will prevent many health disorders
- To be cool and handbill every emotion very smoothly in every walk of life
- To learn to eat cost effective but healthy foods that are rich in essential nutrients
- To develop immunity naturally that will improve resistance against many health disorders

UNIT I HEALTH AND ITS IMPORTANCE

2+4

Health: Definition - Importance of maintaining health - More importance on prevention than treatment

Ten types of health one has to maintain - Physical health - Mental health - Social health - Financial health - Emotional health - Spiritual health - Intellectual health - Relationship health - Environmental health - Occupational/Professional heath.

Present health status - The life expectancy-present status - mortality rate - dreadful diseases - Non-communicable diseases (NCDs) the leading cause of death - 60% - heart disease - cancer - diabetes - chronic pulmonary diseases - risk factors - tobacco - alcohol - unhealthy diet - lack of physical activities.

Types of diseases and disorders - Lifestyle disorders - Obesity - Diabetes - Cardiovascular diseases - Cancer - Strokes - COPD - Arthritis - Mental health issues.

Causes of the above diseases / disorders - Importance of prevention of illness - Takes care of health - Improves quality of life - Reduces absenteeism - Increase satisfaction - Saves time

Simple lifestyle modifications to maintain health - Healthy Eating habits (Balanced diet according to age) Physical Activities (Stretching exercise, aerobics, resisting exercise) - Maintaining BMI-Importance and actions to be taken

UNIT II DIET 4+6

Role of diet in maintaining health - energy one needs to keep active throughout the day - nutrients one needs for growth and repair - helps one to stay strong and healthy - helps to prevent diet-related illness, such as some cancers - keeps active and - helps one to maintain a healthy weight - helps to reduce risk of developing lifestyle disorders like diabetes – arthritis – hypertension – PCOD – infertility – ADHD – sleeplessness -helps to reduce the risk of heart diseases - keeps the teeth and bones strong.

Balanced Diet and its 7 Components - Carbohydrates – Proteins – Fats – Vitamins – Minerals - Fibre and Water.

Food additives and their merits & demerits - Effects of food additives - Types of food additives - Food additives and processed foods - Food additives and their reactions

Definition of BMI and maintaining it with diet

Importance - Consequences of not maintaining BMI - different steps to maintain optimal BM

Common cooking mistakes

Different cooking methods, merits and demerits of each method

UNIT III ROLE OF AYURVEDA & SIDDHA SYSTEMS IN MAINTAINING HEALTH 4+4

AYUSH systems and their role in maintaining health - preventive aspect of AYUSH - AYUSH as a soft therapy.

Secrets of traditional healthy living - Traditional Diet and Nutrition - Regimen of Personal and Social Hygiene - Daily routine (Dinacharya) - Seasonal regimens (Ritucharya) - basic sanitation and healthy living environment - Sadvritta (good conduct) - for conducive social life.

Principles of Siddha & Ayurveda systems - Macrocosm and Microcosm theory - Pancheekarana Theory / (Five Element Theory) 96 fundamental Principles - Uyir Thathukkal (Tri-Dosha Theory) - Udal Thathukkal

Prevention of illness with our traditional system of medicine

Primary Prevention - To decrease the number of new cases of a disorder or illness - Health promotion/education, and - Specific protective measures - Secondary Prevention - To lower the rate of established cases of a disorder or illness in the population (prevalence) - Tertiary Prevention - To decrease the amount of disability associated with an existing disorder.

UNIT IV MENTAL WELLNESS

3+4

Emotional health - Definition and types - Three key elements: the subjective experience - the physiological response - the behavioral response - Importance of maintaining emotional health - Role of emotions in daily life -Short term and long term effects of emotional disturbances - Leading a healthy life with emotions - Practices for emotional health - Recognize how thoughts influence

emotions - Cultivate positive thoughts - Practice self-compassion - Expressing a full range of emotions.

Stress management - Stress definition - Stress in daily life - How stress affects one's life - Identifying the cause of stress - Symptoms of stress - Managing stress (habits, tools, training, professional help) - Complications of stress mismanagement.

Sleep - Sleep and its importance for mental wellness - Sleep and digestion. **Immunity -** Types and importance - Ways to develop immunity

UNIT V YOGA 2+12

Definition and importance of yoga - Types of yoga - How to Choose the Right Kind for individuals according to their age - The Eight Limbs of Yoga - Simple yogasanas for cure and prevention of health disorders - What yoga can bring to our life.

TOTAL: 45 PERIODS

TEXT BOOKS:

- Nutrition and Dietetics Ashley Martin, Published by White Word Publications, New York, NY 10001, USA
- 2. Yoga for Beginners_ 35 Simple Yoga Poses to Calm Your Mind and Strengthen Your Body, by Cory Martin, Copyright © 2015 by Althea Press, Berkeley, California

REFERENCES:

- WHAT WE KNOW ABOUT EMOTIONAL INTELLIGENCE How It Affects Learning, Work, Relationships, and Our Mental Health, by Moshe Zeidner, Gerald Matthews, and Richard D. Roberts A Bradford Book, The MIT Press, Cambridge, Massachusetts, London, England
- 2. The Mindful Self-Compassion Workbook, Kristin Neff, Ph.D Christopher Germer, Ph.D, Published by The Guilford Press A Division of Guilford Publications, Inc.370 Seventh Avenue, Suite 1200, New York, NY 10001
- 1. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4799645/
- 2. Simple lifestyle modifications to maintain health
 - https://www.niddk.nih.gov/health-information/diet-nutrition/changing-habits-better-health#:~:text=Make%20your%20new%20healthy%20habit,t%20have%20time%20to%20c ook.
- 3. Read more: https://www.legit.ng/1163909-classes-food-examples-functions.html
- 4. https://www.yaclass.in/p/science-state-board/class-9/nutrition-and-health-5926
- 5. **Benefits of healthy eating** https://www.cdc.gov/nutrition/resources-publications/benefits-of-healthy-eating.html
- 6. **Food additives** https://www.betterhealth.vic.gov.au/health/conditionsandtreatments/food-additives
- 7. **BMI** https://www.hsph.harvard.edu/nutritionsource/healthy-weight/ https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations
- 8. **Yoga** https://www.healthifyme.com/blog/types-of-yoga/

https://yogamedicine.com/guide-types-yoga-styles/

Ayurveda: https://vikaspedia.in/health/ayush/ayurveda-1/concept-of-healthy-living-in-ayurveda

- 9. Siddha: http://www.tkdl.res.in/tkdl/langdefault/Siddha/Sid Siddha Concepts.asp
- 10. **CAM**: https://www.hindawi.com/journals/ecam/2013/376327/
- 11. **Preventive** herbs: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3847409/

COURSE OUTCOMES:

After completing the course, the students will be able to:

- Learn the importance of different components of health
- · Gain confidence to lead a healthy life
- Learn new techniques to prevent lifestyle health disorders
- Understand the importance of diet and workouts in maintaining health

MX3086

HISTORY OF SCIENCE AND TECHNOLOGY IN INDIA

LT PC 3 0 0 0

UNIT-I CONCEPTS AND PERSPECTIVES

Meaning of History

Objectivity, Determinism, Relativism, Causation, Generalization in History; Moral judgment in history

Extent of subjectivity, contrast with physical sciences, interpretation and speculation, causation verses evidence, concept of historical inevitability, Historical Positivism.

Science and Technology-Meaning, Scope and Importance, Interaction of science, technology & society, Sources of history on science and technology in India.

UNIT-II HISTORIOGRAPHY OF SCIENCE AND TECHNOLOGY IN INDIA

Introduction to the works of D.D. Kosambi, Dharmpal, Debiprasad Chattopadhyay, Rehman, S. Irfan Habib, Deepak Kumar, Dhruv Raina, and others.

UNIT-III SCIENCE AND TECHNOLOGY IN ANCIENT INDIA

Technology in pre-historic period
Beginning of agriculture and its impact on technology
Science and Technology during Vedic and Later Vedic times
Science and technology from 1st century AD to C-1200.

UNIT-IV SCIENCE AND TECHNOLOGY IN MEDIEVAL INDIA

Legacy of technology in Medieval India, Interactions with Arabs
Development in medical knowledge, interaction between Unani and Ayurveda and alchemy
Astronomy and Mathematics: interaction with Arabic Sciences
Science and Technology on the eve of British conquest

UNIT-V SCIENCE AND TECHNOLOGY IN COLONIAL INDIA

Science and the Empire
Indian response to Western Science
Growth of techno-scientific institutions

UNIT-VI SCIENCE AND TECHNOLOGY IN A POST-INDEPENDENT INDIA

Science, Technology and Development discourse

Shaping of the Science and Technology Policy

Developments in the field of Science and Technology

Science and technology in globalizing India

Social implications of new technologies like the Information Technology and Biotechnology

TOTAL: 45 PERIODS

MX3087 POLITICAL AND ECONOMIC THOUGHT FOR A HUMANE SOCIETY

LT PC 3 0 0 0

Pre-Requisite: None. (Desirable: Universal Human Values 1, Universal Human Values 2)

OBJECTIVES:

• This course will begin with a short overview of human needs and desires and how different political-economic systems try to fullfill them. In the process, we will end with a critique of different systems and their implementations in the past, with possible future directions.

COURSE TOPICS:

Considerations for humane society, holistic thought, human being's desires, harmony in self, harmony in relationships, society, and nature, societal systems. (9 lectures, 1 hour each)

(Refs: A Nagaraj, M K Gandhi, JC Kumarappa)

Capitalism – Free markets, demand-supply, perfect competition, laissez-faire, monopolies, imperialism. Liberal democracy. **(5 lectures)**

(Refs: Adam smith, J S Mill)

Fascism and totalitarianism. World war I and II. Cold war. (2 lectures)

Communism – Mode of production, theory of labour, surplus value, class struggle, dialectical materialism, historical materialism, Russian and Chinese models.

(Refs: Marx, Lenin, Mao, M N Roy) (5 lectures)

Welfare state. Relation with human desires. Empowered human beings, satisfaction. (3 lectures)

Gandhian thought. Swaraj, Decentralized economy & polity, Community. Control over one's lives. Relationship with nature. **(6 lectures)**

(Refs: M K Gandhi, Schumacher, Kumarappa)

Essential elements of Indian civilization. (3 lectures)

(Refs: Pt Sundarlal, R C Mazumdar, Dharampal)

Technology as driver of society, Role of education in shaping of society. Future directions. (4 lectures) (Refs: Nandkishore Acharya, David Dixon, Levis Mumford)

Conclusion (2 lectures)

Total lectures: 39

Preferred Textbooks: See Reference Books

Reference Books: Authors mentioned along with topics above. Detailed reading list will be provided.

GRADING:

Mid sems30End sem20Home Assign10Term paper40

TOTAL: 45 PERIODS

OUTCOME:

• The students will get an understanding of how societies are shaped by philosophy, political and economic system, how they relate to fulfilling human goals & desires with some case studies of how different attempts have been made in the past and how they have fared.

111710000

OBJECTIVE:

The objective of the course is to provide an understanding of the state, how it works through its main organs, primacy of politics and political process, the concept of sovereignty and its changing contours in a globalized world. In the light of this, an attempt will be made to acquaint the students with the main development and legacies of national movement and constitutional development in India, reasons for adopting a Parliamentary-federal system, the broad philosophy of the Constitution of India and the changing nature of Indian Political System. Challenges/ problems and issues concerning national integration and nation-building will also be discussed in the contemporary context with the aim of developing a future vision for a better India.

TOPICS:

Understanding the need and role of State and politics.

Development of Nation-State, sovereignty, sovereignty in a globalized world.

Organs of State – Executive, Legislature, Judiciary. Separation of powers, forms of government-unitary-federal, Presidential-Parliamentary, The idea of India.

1857 and the national awakening.

1885 Indian National Congress and development of national movement – its legacies. Constitution making and the Constitution of India.

Goals, objective and philosophy.

Why a federal system?

National integration and nation-building.

Challenges of nation-building – State against democracy (Kothari) New social movements.

The changing nature of Indian Political System, the future scenario.

What can we do?

OUTCOME OF THE COURSE:

It is expected that this course will make students aware of the theoretical aspect of the state, its organs, its operationalization aspect, the background and philosophy behind the founding of the present political system, broad streams and challenges of national integration and nation-building in India. It will equip the students with the real understanding of our political system/ process in correct perspective and make them sit up and think for devising ways for better participation in the system with a view to making the governance and delivery system better for the common man who is often left unheard and unattended in our democratic setup besides generating a lot of dissatisfaction and difficulties for the system.

SUGGESTED READING:

- i. Sunil Khilnani, The Idea of India. Penguin India Ltd., New Delhi.
- ii. Madhav Khosla, The Indian Constitution, Oxford University Press. New Delhi, 2012.
- iii. Brij Kishore Sharma, Introduction to the Indian Constitution, PHI, New Delhi, latest edition.
- iv. Sumantra Bose, Transforming India: Challenges to the World's Largest Democracy, Picador India, 2013.
- v. Atul Kohli, Democracy and Discontent: India's Growing Crisis of Governability, Cambridge University Press, Cambridge, U. K., 1991.
- vi. M. P. Singh and Rekha Saxena, Indian Politics: Contemporary Issues and Concerns, PHI, New Delhi, 2008. latest edition.
- vii. Rajni Kothari, Rethinking Democracy, Orient Longman, New Delhi, 2005.

TOTAL: 45 PERIODS

OBJECTIVES

- To Understand the Introduction and basic Terminologies safety.
- To enable the students to learn about the Important Statutory Regulations and standards.
- To enable students to Conduct and participate the various Safety activities in the Industry.
- To have knowledge about Workplace Exposures and Hazards.
- To assess the various Hazards and consequences through various Risk Assessment Techniques.

UNIT I SAFETY TERMINOLOGIES

Hazard-Types of Hazard- Risk-Hierarchy of Hazards Control Measures-Lead indicators- lag Indicators-Flammability- Toxicity Time-weighted Average (TWA) - Threshold LimitValue (TLV) - Short Term Exposure Limit (STEL)- Immediately dangerous to life or health (IDLH)- acute and chronic Effects- Routes of Chemical Entry-Personnel Protective Equipment- Health and Safety Policy-Material Safety Data Sheet MSDS

UNIT II STANDARDS AND REGULATIONS

Indian Factories Act-1948- Health- Safety- Hazardous materials and Welfare- ISO 45001:2018 occupational health and safety (OH&S) - Occupational Safety and Health Audit IS14489:1998-Hazard Identification and Risk Analysis- code of practice IS 15656:2006

UNIT III SAFETY ACTIVITIES

Toolbox Talk- Role of safety Committee- Responsibilities of Safety Officers and Safety Representatives- Safety Training and Safety Incentives- Mock Drills- On-site Emergency Action Plan- Off-site Emergency Action Plan- Safety poster and Display- Human Error Assessment

UNIT IV WORKPLACE HEALTH AND SAFETY

Noise hazard- Particulate matter- musculoskeletal disorder improper sitting poster and lifting Ergonomics RULE & REBA- Unsafe act & Unsafe Condition- Electrical Hazards- Crane Safety-Toxic gas Release

UNIT V HAZARD IDENTIFICATION TECHNIQUES

Job Safety Analysis-Preliminary Hazard Analysis-Failure mode and Effects Analysis- Hazard and Operability- Fault Tree Analysis- Event Tree Analysis Qualitative and Quantitative Risk Assessment- Checklist Analysis- Root cause analysis- What-If Analysis- and Hazard Identification and Risk Assessment

TOTAL: 45 PERIODS

COURSE OUTCOMES

on completion of this course the student will be able:

- Understand the basic concept of safety.
- Obtain knowledge of Statutory Regulations and standards.
- Know about the safety Activities of the Working Place.
- Analyze on the impact of Occupational Exposures and their Remedies
- Obtain knowledge of Risk Assessment Techniques.

TEXTBOOKS

- 1. R.K. Jain and Prof. Sunil S. Rao Industrial Safety, Health and Environment Management Systems KHANNA PUBLISHER
- 2. L. M. Deshmukh Industrial Safety Management: Hazard Identification and Risk Control McGraw-Hill Education

REFERENCES

- 1. Frank Lees (2012) 'Lees' Loss Prevention in Process Industries. Butterworth-Heinemann publications, UK, 4th Edition.
- 2. John Ridley & John Channing (2008) Safety at Work: Routledge, 7th Edition.

- 3. Dan Petersen (2003) Techniques of Safety Management: A System Approach.
- 4. Alan Waring.(1996). Safety management system: Chapman & Hall, England
- 5. Society of Safety Engineers, USA

ONLINE RESOURCES

ISO 45001:2018 occupational health and safety (OH&S) International Organization for Standardization https://www.iso.org/standard/63787.html Indian Standard code of practice on occupational safety and health audit https://law.resource.org/pub/in/bis/S02/is.14489.1998.pdf Indian Standard code of practice on Hazard Identification and Risk Analysis IS 15656:2006 https://law.resource.org/pub/in/bis/S02/is.15656.2006.pdf

Course								Р	rogran	n Outc	ome					
Outcome s	Statement	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	Understand the basic concept of safety.	3	3	3	1	1	3	2	2	3	3	1	3	3	3	3
CO2	Obtain knowledge of Statutory Regulations and standards.	2	3	2	2	1	3	2	3	3	2	1	3	3	3	3
CO3	Know about the safety Activities of the Working Place.	2	2	2	2	V ₁ N	2	2	2	3	2	1	2	3	3	3
CO4	Analyze on the impact of Occupational Exposures and their Remedies	3	3	3	2	2	3	2	2	3	2	1	3	3	3	3
CO5	Obtain knowledge of Risk Assessment Techniques.	3	2	3	2	2	3	2	2	3	2	2	3	3	3	3
	Avg.	3	3	3	2	1	3	2	2	3	2	1	3	3	3	3

PROGRESS THROUGH KNOWLEDGE

OPEN ELECTIVE I AND II

OCS351 ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FUNDAMENTALS

LTPC 2023

OBJECTIVES:

The main objectives of this course are to:

- 1. Understand the importance, principles, and search methods of Al
- 2. Provide knowledge on predicate logic and Prolog.
- 3. Introduce machine learning fundamentals
- 4. Study of supervised learning algorithms.
- 5. Study about unsupervised learning algorithms.

UNIT I INTELLIGENT AGENT AND UNINFORMED SEARCH

6

Introduction - Foundations of AI - History of AI - The state of the art - Risks and Benefits of AI - Intelligent Agents - Nature of Environment - Structure of Agent - Problem Solving Agents - Formulating Problems - Uninformed Search - Breadth First Search - Dijkstra's algorithm or uniform-cost search - Depth First Search - Depth Limited Search

UNIT II PROBLEM SOLVING WITH SEARCH TECHNIQUES

(

Informed Search - Greedy Best First - A* algorithm - Adversarial Game and Search - Game theory - Optimal decisions in game - Min Max Search algorithm - Alpha-beta pruning - Constraint Satisfaction Problems (CSP) - Examples - Map Coloring - Job Scheduling - Backtracking Search for CSP

UNIT III LEARNING

6

Machine Learning: Definitions – Classification - Regression - approaches of machine learning models - Types of learning - Probability - Basics - Linear Algebra – Hypothesis space and inductive bias, Evaluation. Training and test sets, cross validation, Concept of over fitting, under fitting, Bias and Variance - **Regression**: Linear Regression - Logistic Regression

UNIT IV SUPERVISED LEARNING

6

Neural Network: Introduction, Perceptron Networks – Adaline - Back propagation networks - **Decision Tree:** Entropy – Information gain - Gini Impurity - classification algorithm - Rule based Classification - **Naïve Bayesian classification - Support Vector Machines** (SVM)

UNIT V UNSUPERVISED LEARNING

6

Unsupervised Learning – Principle Component Analysis - **Neural Network**: Fixed Weight Competitive Nets - Kohonen Self-Organizing Feature Maps – **Clustering**: Definition - Types of Clustering – Hierarchical clustering algorithms – k-means algorithm

TOTAL: 30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS Programs for Problem solving with Search

- 1. Implement breadth first search
- 2. Implement depth first search
- 3. Analysis of breadth first and depth first search in terms of time and space
- 4. Implement and compare Greedy and A* algorithms.

Supervised learning

- 5. Implement the non-parametric locally weighted regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs
- 6. Write a program to demonstrate the working of the decision tree based algorithm.
- 7. Build an artificial neural network by implementing the back propagation algorithm and test the same using appropriate data sets.
- 8. Write a program to implement the naïve Bayesian classifier.

Unsupervised learning

- 9. Implementing neural network using self-organizing maps
- 10. Implementing k-Means algorithm to cluster a set of data.
- 11. Implementing hierarchical clustering algorithm.

Note:

- Installation of gnu-prolog, Study of Prolog (gnu-prolog).
- The programs can be implemented in using C++/JAVA/ Python or appropriate tools can be used by designing good user interface
- Data sets can be taken from standard repositories (https://archive.ics.uci.edu/ml/datasets.html) or constructed by the students.

OUTCOMES:

- CO1: Understand the foundations of AI and the structure of Intelligent Agents
- CO2: Use appropriate search algorithms for any Al problem
- CO3: Study of learning methods
- CO4: Solving problem using Supervised learning
- CO5: Solving problem using Unsupervised learning

TOTAL PERIODS: 60

TEXT BOOK

- 1. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", Prentice Hall, Fourth Edition, 2021
- 2. S.N.Sivanandam and S.N.Deepa, Principles of soft computing-Wiley India.3 rd ed,

REFERENCES

- 1. Machine Learning. Tom Mitchell. First Edition, McGraw- Hill, 1997.
- 2. I. Bratko, "Prolog: Programming for Artificial Intelligencell, Fourth edition, Addison-Wesley Educational Publishers Inc., 2011.
- 3. C. Muller & Sarah Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.

OCS352

IOT CONCEPTS AND APPLICATIONS

LTPC 2023

OBJECTIVES:

- To apprise students with basic knowledge of IoT that paves a platform to understand physical and logical design of IOT
- To teach a student how to analyse requirements of various communication models and protocols for cost-effective design of IoT applications on different IoT platforms.
- To introduce the technologies behind Internet of Things(IoT).
- To explain the students how to code for an IoT application using Arduino/Raspberry Pi open platform.
- To apply the concept of Internet of Things in real world scenario.

UNIT I INTRODUCTION TO INTERNET OF THINGS

5

Evolution of Internet of Things – Enabling Technologies – IoT Architectures: oneM2M, IoT World Forum (IoTWF) and Alternative IoT Models – Simplified IoT Architecture and Core IoT Functional Stack – Fog, Edge and Cloud in IoT

UNIT II COMPONENTS IN INTERNET OF THINGS

5

Functional Blocks of an IoT Ecosystem – Sensors, Actuators, and Smart Objects – Control Units - Communication modules (Bluetooth, Zigbee, Wifi, GPS, GSM Modules)

UNIT III PROTOCOLS AND TECHNOLOGIES BEHIND IOT

(

IOT Protocols - IPv6, 6LoWPAN, MQTT, CoAP - RFID, Wireless Sensor Networks, BigData Analytics, Cloud Computing, Embedded Systems.

UNIT IV OPEN PLATFORMS AND PROGRAMMING

7

IOT deployment for Raspberry Pi /Arduino platform-Architecture –Programming – Interfacing – Accessing GPIO Pins – Sending and Receiving Signals Using GPIO Pins – Connecting to the Cloud.

UNIT V IOT APPLICATIONS

7

Business models for the internet of things, Smart city, Smart mobility and transport, Industrial IoT, Smart health, Environment monitoring and surveillance – Home Automation – Smart Agriculture

30 PERIODS

PRACTICAL EXERCISES: 30 PERIODS

- 1. Introduction to Arduino platform and programming
- 2. Interfacing Arduino to Zigbee module
- 3. Interfacing Arduino to GSM module
- 4. Interfacing Arduino to Bluetooth Module
- 5 Introduction to Raspberry PI platform and python programming
- 6. Interfacing sensors to Raspberry PI
- 7. Communicate between Arduino and Raspberry PI using any wireless medium
- 8. Setup a cloud platform to log the data
- 9. Log Data using Raspberry PI and upload to the cloud platform
- 10.Design an IOT based system

OUTCOMES:

- CO 1:Explain the concept of IoT.
- **CO 2:**Understand the communication models and various protocols for IoT.
- CO 3:Design portable IoT using Arduino/Raspberry Pi /open platform
- CO 4: Apply data analytics and use cloud offerings related to IoT.
- CO 5: Analyze applications of IoT in real time scenario.

TOTAL PERIODS:60

TEXTBOOKS

- Robert Barton, Patrick Grossetete, David Hanes, Jerome Henry, Gonzalo Salgueiro, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press, 2017
- 2. Samuel Greengard, The Internet of Things, The MIT Press, 2015

REFERENCES

- 1. Perry Lea, "Internet of things for architects", Packt, 2018
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley, 2012
- 3. IOT (Internet of Things) Programming: A Simple and Fast Way of Learning, IOT Kindle Edition.
- 4. Dieter Uckelmann, Mark Harrison, Michahelles, Florian (Eds), "Architecting the Internet of Things", Springer, 2011.
- 5. ArshdeepBahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015
- 6. https://www.arduino.cc/ https://www.ibm.com/smarterplanet/us/en/?ca=v smarterplanet

OCS353

DATA SCIENCE FUNDAMENTALS

LTPC 2023

COURSE OBJECTIVES:

- Familiarize students with the data science process.
- Understand the data manipulation functions in Numpy and Pandas.
- Explore different types of machine learning approaches.

- Understand and practice visualization techniques using tools.
- Learn to handle large volumes of data with case studies.

UNIT I INTRODUCTION

6

Data Science: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals – Retrieving data – data preparation - Exploratory Data analysis – build the model – presenting findings and building applications - Data Mining - Data Warehousing – Basic statistical descriptions of Data

UNIT II DATA MANIPULATION

9

Python Shell - Jupyter Notebook - IPython Magic Commands - NumPy Arrays-Universal Functions - Aggregations - Computation on Arrays - Fancy Indexing - Sorting arrays - Structured data - Data manipulation with Pandas - Data Indexing and Selection - Handling missing data - Hierarchical indexing - Combining datasets - Aggregation and Grouping - String operations - Working with time series - High performance

UNIT III MACHINE LEARNING

5

The modeling process - Types of machine learning - Supervised learning - Unsupervised learning - Semi-supervised learning - Classification, regression - Clustering - Outliers and Outlier Analysis

UNIT IV DATA VISUALIZATION

5

Importing Matplotlib – Simple line plots – Simple scatter plots – visualizing errors – density and contour plots – Histograms – legends – colors – subplots – text and annotation – customization – three dimensional plotting - Geographic Data with Basemap - Visualization with Seaborn

UNIT V HANDLING LARGE DATA

5

Problems - techniques for handling large volumes of data - programming tips for dealing with large data sets- Case studies: Predicting malicious URLs, Building a recommender system - Tools and techniques needed - Research question - Data preparation - Model building - Presentation and automation.

30 PERIODS 30 PERIODS

PRACTICAL EXERCISES:

LAB EXERCISES

- 1. Download, install and explore the features of Python for data analytics.
- 2. Working with Numpy arrays
- 3. Working with Pandas data frames
- 4. Basic plots using Matplotlib
- 5. Statistical and Probability measures
 - a) Frequency distributions
 - b) Mean, Mode, Standard Deviation
 - c) Variability
 - d) Normal curves
 - e) Correlation and scatter plots
 - f) Correlation coefficient
 - g) Regression
- 6. Use the standard benchmark data set for performing the following:
- a) Univariate Analysis: Frequency, Mean, Median, Mode, Variance, Standard Deviation, Skewness and Kurtosis.
- b) Bivariate Analysis: Linear and logistic regression modelling.
- 7. Apply supervised learning algorithms and unsupervised learning algorithms on any data set.
- 8. Apply and explore various plotting functions on any data set.

Note: Example data sets like: UCI, Iris, Pima Indians Diabetes etc.

COURSE OUTCOMES:

At the end of this course, the students will be able to:

CO1: Gain knowledge on data science process.

CO2: Perform data manipulation functions using Numpy and Pandas.

CO3 Understand different types of machine learning approaches.

CO4: Perform data visualization using tools.

CO5: Handle large volumes of data in practical scenarios.

TOTAL PERIODS:60

TEXT BOOKS

- 1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016.
- 2. Jake VanderPlas, "Python Data Science Handbook", O'Reilly, 2016.

REFERENCES

- 1. Robert S. Witte and John S. Witte, "Statistics". Eleventh Edition, Wiley Publications, 2017.
- 2. Allen B. Downey, "Think Stats: Exploratory Data Analysis in Python", Green Tea Press.2014.

CCS333

AUGMENTED REALITY/VIRTUAL REALITY

L T P C 2 0 2 3

OBJECTIVES:

- To impart the fundamental aspects and principles of AR/VR technologies.
- To know the internals of the hardware and software components involved in the development of AR/VR enabled applications.
- To learn about the graphical processing units and their architectures.
- To gain knowledge about AR/VR application development.
- To know the technologies involved in the development of AR/VR based applications.

UNIT I INTRODUCTION

7

Introduction to Virtual Reality and Augmented Reality – Definition – Introduction to Trajectories and Hybrid Space-Three I's of Virtual Reality – Virtual Reality Vs 3D Computer Graphics – Benefits of Virtual Reality – Components of VR System – Introduction to AR-AR Technologies-Input Devices – 3D Position Trackers – Types of Trackers – Navigation and Manipulation Interfaces – Gesture Interfaces – Types of Gesture Input Devices – Output Devices – Graphics Display – Human Visual System – Personal Graphics Displays – Large Volume Displays – Sound Displays – Human Auditory System.

UNIT II VR MODELING

6

Modeling – Geometric Modeling – Virtual Object Shape – Object Visual Appearance – Kinematics Modeling – Transformation Matrices – Object Position – Transformation Invariants – Object Hierarchies – Viewing the 3D World – Physical Modeling – Collision Detection – Surface Deformation – Force Computation – Force Smoothing and Mapping – Behavior Modeling – Model Management.

UNIT III VR PROGRAMMING

6

VR Programming – Toolkits and Scene Graphs – World ToolKit – Java 3D – Comparison of World ToolKit and Java 3D

UNIT IV APPLICATIONS

(

Human Factors in VR – Methodology and Terminology – VR Health and Safety Issues – VR and Society-Medical Applications of VR – Education, Arts and Entertainment – Military VR Applications – Emerging Applications of VR – VR Applications in Manufacturing – Applications of VR in Robotics – Information Visualization – VR in Business – VR in Entertainment – VR in Education.

UNIT V AUGMENTED REALITY

5

Introduction to Augmented Reality-Computer vision for AR-Interaction-Modelling and Annotation-Navigation-Wearable devices

30 PERIODS 30 PERIODS

PRACTICAL EXERCISES:

- 1. Study of tools like Unity, Maya, 3DS MAX, AR toolkit, Vuforia and Blender.
- 2. Use the primitive objects and apply various projection types by handling camera.
- 3. Download objects from asset store and apply various lighting and shading effects.
- 4. Model three dimensional objects using various modelling techniques and apply textures over them.
- 5. Create three dimensional realistic scenes and develop simple virtual reality enabled mobile applications which have limited interactivity.
- 6. Add audio and text special effects to the developed application.
- 7. Develop VR enabled applications using motion trackers and sensors incorporating full haptic interactivity.
- 8. Develop AR enabled applications with interactivity like E learning environment, Virtual walkthroughs and visualization of historic places.
- 9. Develop AR enabled simple applications like human anatomy visualization, DNA/RNA structure visualization and surgery simulation.
- 10. Develop simple MR enabled gaming applications.

TOTAL PERIODS:60

OUTCOMES:

On completion of the course, the students will be able to:

CO1: Understand the basic concepts of AR and VR

CO2:Understand the tools and technologies related to AR/VR

CO3: Know the working principle of AR/VR related Sensor devices

CO4: Design of various models using modeling techniques

CO5: Develop AR/VR applications in different domains

TEXTBOOKS:

- 1. Charles Palmer, John Williamson, "Virtual Reality Blueprints: Create compelling VR experiences for mobile", Packt Publisher, 2018
- 2. Dieter Schmalstieg, Tobias Hollerer, "Augmented Reality: Principles & Practice", Addison Wesley, 2016
- 3. John Vince, "Introduction to Virtual Reality", Springer-Verlag, 2004.
- 4. William R. Sherman, Alan B. Craig: Understanding Virtual Reality Interface, Application, Design", Morgan Kaufmann, 2003

CO's - PO's & PSO's MAPPING

CO's						PC)'s								PSO's	3
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	
1	3	2	2	-	3	ı	•	-	2	2	1	2	2	1	2	
2	3	2	2	1	3	ı	•	-	3	2	2	3	3	1	2	
3	3	3	2	2	3	ı	1	•	3	2	1	2	3	2	2	
4	3	3	3	2	3	•	-	-	3	2	2	3	3	2	2	
5	3	3	3	3	3	-	-	-	3	3	3	3	3	3	3	
AVg.	3.00	2.60	2.40	2.00	3.00	-	-	-	2.80	2.20	1.80	2.60	2.80	1.80	2.20	

OPEN ELCTIVE III

OHS351 ENGLISH FOR COMPETITIVE EXAMINATIONS

L T P C 3 0 0 3

TOTAL: 45 PERIODS

Course Description:

Students aspiring to take up competitive exams of which the English language is a vital component will find this course useful. Designed for students in the higher semesters, the course will help students to familiarise themselves with those aspects of English that are tested in these examinations.

Objectives:

- To train the students in the language components essential to face competitive examinations both at the national (UPSC, Banking, Railway, Defence) and the international level (GRE, TOEFL, IELTS).
- To enhance an awareness of the specific patterns in language testing and the respective skills to tackle verbal reasoning and verbal ability tests.
- To inculcate effective practices in language-learning in order to improve accuracy in usage of grammar and coherence in writing.
- To improve students' confidence to express their ideas and opinions in formal contexts
- To create awareness of accuracy and precision in communication

UNIT I 9

Orientation on different formats of competitive exams - Vocabulary - Verbal ability - Verbal reasoning - Exploring the world of words - Essential words - Meaning and their usage - Synonyms-antonyms - Word substitution - Word analogy - Idioms and phrases - Commonly confused words - Spellings - Word expansion - New words in use.

UNIT II

Grammar – Sentence improvement –Sentence completion – Rearranging phrases into sentences – Error identification –Tenses – Prepositions – Adjectives – Adverbs – Subject-verb agreement – Voice – Reported speech – Articles – Clauses – Speech patterns.

UNIT III 9

Reading - Specific information and detail - Identifying main and supporting ideas - Speed reading techniques - Improving global reading skills - Linking ideas - Summarising - Understanding argument - Identifying opinion/attitude and making inferences - Critical reading.

UNIT IV

Writing – Pre-writing techniques – Mindmap - Describing pictures and facts - Paragraph structure – organising points – Rhetoric writing – Improving an answer – Drafting, writing and developing an argument – Focus on cohesion – Using cohesive devices –Analytic writing – Structure and types of essay – Mind maps – Structure of drafts, letters, memos, emails – Statements of Purpose – Structure, Content and Style.

UNIT V 9

Listening and Speaking – Contextual listening – Listening to instructions – Listening for specific information – Identifying detail, main ideas – Following signpost words – Stress, rhythm and intonation – Speaking to respond and elicit ideas – Guided speaking – Opening phrases – Interactive communication – Dysfluency -Sentence stress – Speaking on a topic – Giving opinions – Giving an oral presentation – Telling a story or a personal anecdote – Talking about oneself – Utterance – Speech acts- Brainstorming ideas – Group discussion.

Learning Outcomes:

At the end of the course, learners will be able

 expand their vocabulary and gain practical techniques to read and comprehend a wide range of texts with the emphasis required

- identify errors with precision and write with clarity and coherence
- understand the importance of task fulfilment and the usage of task-appropriate vocabulary
- communicate effectively in group discussions, presentations and interviews
- write topic based essays with precision and accuracy

CO-PO & PSO MAPPING

CO	PO												PSO		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	3	3	1	3	3	3	3	1	3	1	3	-	-	-
2	2	3	3	2	3	3	3	3	1	3	3	3	-	-	-
3	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
4	2	2	2	2	2	2	2	2	3	3	3	3	-	-	-
5	2	2	2	2	2	2	2	2	2	3	2	3	-	-	-
AVg.	2	2.6	2.6	2	2.6	2.6	2.6	2.6	2	3	2.4	3	-	-	-

• 1-low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

Teaching Methods:

Instructional methods will involve discussions, taking mock tests on various question papers – Objective, multiple-choice and descriptive. Peer evaluation, self-check on improvement and peer feedback - Practice sessions on speaking assessments, interview and discussion – Using multimedia.

Evaluative Pattern:

Internal Tests – 50%

End Semester Exam - 50%

TEXTBOOKS:

1. R.P.Bhatnagar - General English for Competitive Examinations. Macmillan India Limited, 2009.

REFERENCEBOOKS:

- 1. Educational Testing Service The Official Guide to the GRE Revised General Test, Tata McGraw Hill, 2010.
- 2. The Official Guide to the TOEFL Test, Tata McGraw Hill, 2010.
- 3. R Rajagopalan- General English for Competitive Examinations, McGraw Hill Education (India) Private Limited, 2008.

Websites

http://www.examenglish.com/, http://www.ets.org/, http://www.bankxams.com/http://civilservicesmentor.com/, http://www.educationobserver.comhttp://www.cambridgeenglish.org/in/

OCE353

LEAN CONCEPTS, TOOLS AND PRACTICES

LT P C 3 0 0 3

OBJECTIVE:

• To impart knowledge about the basics of lean principles, tools and techniques, and implementation in the construction industry.

UNIT I INTRODUCTION

9

Introduction and overview of the construction project management - Review of Project Management & Productivity Measurement Systems - Productivity in Construction - Daily Progress Report-The state of the industry with respect to its management practices -construction project phases - The problems with current construction management techniques.

UNIT II LEAN MANAGEMENT

9

Introduction to lean management - Toyota's management principle-Evolution of lean in construction industry - Production theories in construction -Lean construction value - Value in construction - Target value design - Lean project delivery system- Forms of waste in construction industry - Waste Elimination.

UNIT III CORE CONCEPTS IN LEAN

9

Concepts in lean thinking – Principles of lean construction – Variability and its impact – Traditional construction and lean construction – Traditional project delivery - Lean construction and workflow reliability – Work structuring – Production control.

UNIT IV LEAN TOOLS AND TECHNIQUES

9

Value Stream Mapping – Work sampling – Last planner system – Flow and pull based production – Last Planner System – Look ahead schedule – constraint analysis – weekly planning meeting-Daily Huddles – Root cause analysis – Continuous improvement – Just in time.

UNIT V LEAN IMPLEMENTATION IN CONSTRUCTION INDUSTRY

9

Lean construction implementation- Enabling lean through information technology - Lean in design - Design Structure - BIM (Building Information Modelling) - IPD (Integrated Project Delivery) - Sustainability through lean construction approach.

TOTAL: 45 PERIODS

OUTCOME:

On completion of this course, the student is expected to be able to

- **CO1** Explains the contemporary management techniques and the issues in present scenario.
- **CO2** Apply the basics of lean management principles and their evolution from manufacturing industry to construction industry.
- CO3 Develops a better understanding of core concepts of lean construction tools and techniques and their importance in achieving better productivity.
- CO4 Apply lean techniques to achieve sustainability in construction projects.
- CO5 Apply lean construction techniques in design and modeling.

REFERENCES:

- 1. Corfe, C. and Clip, B., Implementing lean in construction: Lean and the sustainability agenda, CIRIA, 2013.
- 2. Shang Gao and Sui Pheng Low, Lean Construction Management: The Toyota Way, Springer, 2014.
- 3. Dave, B., Koskela, L., Kiviniemi, A., Owen, R., andTzortzopoulos, P.,Implementing lean in construction: Lean construction and BIM, CIRIA, 2013.
- **4.** Ballard, G., Tommelein, I., Koskela, L. and Howell, G., Lean construction tools and techniques, 2002.
- **5.** Salem, O., Solomon, J., Genaidy, A. and Luegring, M., Site implementation and Assessment of Lean Construction Techniques, Lean Construction Journal, 2005

OMG352

NGOS AND SUSTAINABLE DEVELOPMENT

L T P C 3 0 0 3

COURSE OBJECTIVES

- . to understand the importance of sustainable development
- to acquire a reasonable knowledge on the legal frameworks pertaining to pollution control and environmental management
- to comprehend the role of NGOs in attaining sustainable development

UNIT I ENVIRONMENTAL CONCERNS

9

Introduction to sustainable development goals, Global responsibility of environmental concern, Importance of environmental preservation, Environmental threats, Pollution and its types, Effects of Pollution, Pollution control, Treatment of wastes

UNIT II ROLE OF NGOS

9

Role of NGO's in national development, NGO's and participatory management, Challenges and limitations of NGO's, Community Development programmes, Role of NGO's in Community Development programmes, Participation of NGO's in environment management, Corporate Social responsibility, NGO's and corporate social responsibility

UNIT III SUSTAINABLE DEVELOPMENT

9

Issues and Challenges of Sustainable Development, Bioenergy, Sustainable Livelihoods and Rural Poor in Sustainable Development, Protecting ecosystem services for sustainable development, Non-renewable sources of energy and its effect, Renewable sources of energy for sustainability, Nuclear resources and Legal Regulation of Hazardous Substances, Sustainable Development: Programme and Policies, Sustainability assessment and Indicators

UNIT IV NGO'S FOR SUSTAINABILITY

9

Civil Society Initiatives in Environment Management, Civil Society Initiatives for Sustainable Development, Global Initiatives in Protecting Global Environment, World Summit on Sustainable Development (Johannesburg Summit 2002), Ecological economics, Environmental sustainability, Social inclusion, Health for all, education for all, Food security and Water security, NGOs and Sustainable Development strategies

UNIT V LEGAL FRAMEWORKS

9

Need for a Legal framework and its enforcement, Legal measures to control pollution, Environmental Legislations in India, Mechanism to implement Environmental Laws in India, Legal Protection of Forests Act 1927, Legal Protection of Wild Life, Role of NGO's in implementing environmental laws, Challenges in the implementation of environmental legislation

TOTAL: 45 PERIODS

OUTCOMES

Upon completion of this course, the student will:

- CO1 Have a thorough grounding on the issues and challenges being faced in attaining sustainable development
- CO2 have a knowledge on the role of NGOs towards sustainable developemnt
- CO 3 present strategies for NGOs in attaining sustainable development
- CO 4 recognize the importance of providing energy, food security and health equity to all members of the society without damaging the environment
- CO 5 understand the environmental legislations

REFERENCE BOOKS

- 1. Kulsange, S and Kamble, R. (2019). Environmental NGO's: Sustainability Stewardship, Lap Lambert Academic Publishing, India, ISBN-13: 978-6200442444.
- 2. Dodds, F. (2007). NGO diplomacy: The influence of nongovernmental organizations in international environmental negotiations. Mit Press, Cambridge, ISBN-13: 978-0262524766.
- 3. Ghosh, S. (Ed.). (2019). Indian environmental law: Key concepts and principles. Orient BlackSwan, India, ISBN-13: 978-9352875795.
- 4. Alan Fowler and Chiku Malunga (2010) NGO Management: The Earthscan Companion, Routledge, ISBN-13: 978-1849711197.

OMG353

DEMOCRACY AND GOOD GOVERNANCE

L T P C 3 0 0 3

UNIT-I

(9)

Structure and Process of Governance: Indian Model of Democracy, Parliament, Party Politics and Electoral Behaviour, Federalism, the Supreme Court and Judicial Activism, Units of Local Governance

UNIT-II (9)

Regulatory Institutions – SEBI, TRAI, Competition Commission of India,

UNIT-III (9)

Lobbying Institutions: Chambers of Commerce and Industries, Trade Unions, Farmers Associations, etc.

UNIT- IV (9)

Contemporary Political Economy of Development in India: Policy Debates over Models of Development in India, Recent trends of Liberalisation of Indian Economy in different sectors, Egovernance

UNIT-V (9)

Dynamics of Civil Society: New Social Movements, Role of NGO's, Understanding the political significance of Media and Popular Culture.

REFERENCES:

- 1. Atul Kohli (ed.): The Success of India's Democracy, Cambridge University Press, 2001.
- 2. Corbridge, Stuart and John Harris: Reinventing India: Liberalisation, Hindu Nationalism and Popular Democracy, Oxford University Press, 2000.
- 3. J.Dreze and A.Sen, India: Economic Development and Social Opportunity, Clarendon, 1995.
- 4. Saima Saeed: Screening the Public Sphere: Media and Democracy in India, 2013
- 5. Himat Singh: Green Revolution Reconsidered: The Rural World of Punjab, OUP, 2001.
- 6. Jagdish Bhagwati: India in Transition: Freeing The Economy, 1993.
- 7. Smitu Kothari: Social Movements and the Redefinition of Democracy, Boulder, Westview, 1993.

CME365

RENEWABLE ENERGY TECHNOLOGIES

LTPC 3 0 0 3

TOTAL 45: PERIODS

COURSE OBJECTIVES

- 1 To know the Indian and global energy scenario
- 2 To learn the various solar energy technologies and its applications.
- To educate the various wind energy technologies.
- 4 To explore the various bio-energy technologies.
- 5 To study the ocean and geothermal technologies.

UNIT – I ENERGY SCENARIO

9

Indian energy scenario in various sectors – domestic, industrial, commercial, agriculture, transportation and others – Present conventional energy status – Present renewable energy status-Potential of various renewable energy sources-Global energy status-Per capita energy consumption - Future energy plans

UNIT – II SOLAR ENERGY

9

Solar radiation – Measurements of solar radiation and sunshine – Solar spectrum - Solar thermal collectors – Flat plate and concentrating collectors – Solar thermal applications – Solar thermal energy storage – Fundamentals of solar photo voltaic conversion – Solar cells – Solar PV Systems – Solar PV applications.

UNIT – III WIND ENERGY

9

Wind data and energy estimation – Betz limit - Site selection for windfarms – characteristics - Wind resource assessment - Horizontal axis wind turbine – components - Vertical axis wind turbine – Wind turbine generators and its performance – Hybrid systems – Environmental issues - Applications.

UNIT - IV BIO-ENERGY

9

Bio resources – Biomass direct combustion – thermochemical conversion - biochemical conversion-mechanical conversion - Biomass gasifier - Types of biomass gasifiers - Cogeneration -- Carbonisation – Pyrolysis - Biogas plants – Digesters –Biodiesel production – Ethanol production - Applications.

UNIT – V OCEAN AND GEOTHERMAL ENERGY

C

Small hydro - Tidal energy - Wave energy - Open and closed OTEC Cycles - Limitations - Geothermal energy - Geothermal energy sources - Types of geothermal power plants - Applications - Environmental impact.

TOTAL: 45 PERIODS

OUTCOMES: At the end of the course the students would be able to

- Discuss the Indian and global energy scenario.
- Describe the various solar energy technologies and its applications.
- Explain the various wind energy technologies.
- Explore the various bio-energy technologies.
- Discuss the ocean and geothermal technologies.

TEXT BOOKS:

- Fundamentals and Applications of Renewable Energy | Indian Edition, by Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala, cGraw Hill; First edition (10 December 2020), ISBN-10: 9390385636
- Renewable Energy Sources and Emerging Technologies, by Kothari, Prentice Hall India Learning Private Limited; 2nd edition (1 January 2011), ISBN-10: 8120344707

REFERENCES:

- 1. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.
- 2. Rai.G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2014.
- 3. Sukhatme.S.P., "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2009.
- 4. Tiwari G.N., "Solar Energy Fundamentals Design, Modelling and applications", Alpha Science Intl Ltd. 2015.
- 5. Twidell, J.W. & Weir A., "Renewable Energy Resources", EFNSpon Ltd., UK, 2015.

00						РО								PSO	
СО	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	1	1	1	2	3	2	2	1	1	3	2	1	2
2	3														
3	3	2	3	1	2	1	3	1	1	1	1	3	1	1	2
4	2	2	2	1	2	1	3	1	1	1	2	3	2	2	2
5	2	1	2	1	2	1	3	1	1	1	1	3	2	1	2
				Lov	v (1) ;	Me	edium	1 (2);	F	ligh (3	3)				

OME354

APPLIED DESIGN THINKING

LTPC 3 0 0 3

OBJECTIVES:

The course aims to

- Introduce tools & techniques of design thinking for innovative product
- development Illustrate customer-centric product innovation using on simple
- use cases Demonstrate development of Minimum usable Prototypes
- Outline principles of solution concepts & their evaluation
- Describe system thinking principles as applied to complex systems

UNIT I DESIGN THINKING PRINCIPLES

q

Exploring Human-centered Design - Understanding the Innovation process, discovering areas of opportunity, Interviewing & empathy-building techniques, Mitigate validation risk with FIR [Forge Innovation rubric] - Case studies

UNIT II ENDUSER-CENTRIC INNOVATION

q

Importance of customer-centric innovation - Problem Validation and Customer Discovery - Understanding problem significance and problem incidence - Customer Validation. Target user, User persona & user stories. Activity: Customer development process - Customer interviews and field visit

UNIT III APPLIED DESIGN THINKING TOOLS

9

Concept of Minimum Usable Prototype [MUP] - MUP challenge brief - Designing & Crafting the value proposition - Designing and Testing Value Proposition; Design a compelling value proposition; Process, tools and techniques of Value Proposition Design

UNIT IV CONCEPT GENERATION

9

Solution Exploration, Concepts Generation and MUP design- Conceptualize the solution concept; explore, iterate and learn; build the right prototype; Assess capability, usability and feasibility. Systematic concept generation; evaluation of technology alternatives and the solution concepts

UNIT V SYSTEM THINKING

9

System Thinking, Understanding Systems, Examples and Understandings, Complex Systems

TOTAL: 45 PERIODS

Course Outcomes

At the end of the course, learners will be able to:

- Define & test various hypotheses to mitigate the inherent risks in product innovations.
- Design the solution concept based on the proposed value by exploring alternate solutions to achieve value-price fit.
- Develop skills in empathizing, critical thinking, analyzing, storytelling & pitching
- Apply system thinking in a real-world scenario

Text Books

- 1. Steve Blank, (2013), The four steps to epiphany: Successful strategies for products that win, Wiley.
- 2. Alexander Osterwalder, Yves Pigneur, Gregory Bernarda, Alan Smith, Trish Papadakos, (2014), Value
- 3. Proposition Design: How to Create Products and Services Customers Want, Wiley
- 4. Donella H. Meadows, (2015), "Thinking in Systems -A Primer", Sustainability Institute.
- 5. Tim Brown,(2012) "Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation", Harper Business.

REFERENCES

- 1. https://www.ideou.com/pages/design-thinking#process
- 2. https://blog.forgefor ward.in/valuation-risk-versus-validation-risk-in-product-innovations-

49f253ca86 24

- 3. https://blog.forgefor.ward.in/product-innovation-rubric-adf5ebdfd356
- 4. https://blog.forgefor.ward.in/evaluating-product-innovations-e8178e58b86e
- 5. https://blog.forgefor.ward.in/user-quide-for-product-innovation-rubric-857181b253dd
- 6. https://blog.forgefor.ward.in/star.tup-failure-is-like-true-lie-7812cdfe9b85

MF3003 REVERSE ENGINEERING

LT P C 3 0 0 3

COURSE OBJECTIVES:

- The main learning objective of this course is to prepare students for:
- Applying the fundamental concepts and principles of reverse engineering in product design and development.
- Applying the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.
- Applying the concept and principles of material identification and process verification in reverse engineering of product design and development.
- Analysing the various legal aspect and applications of reverse engineering in product design and development.
- Understand about 3D scanning hardware & software operations and procedure to generate 3D model

UNIT I INTRODUCTION & GEOMETRIC FORM

9 Hours

Definition – Uses – The Generic Process – Phases – Computer Aided Reverse Engineering - Surface and Solid Model Reconstruction – Dimensional Measurement – Prototyping.

UNIT II MATERIAL CHARACTERISTICS AND PROCESS IDENTIFICATION 9 Hours

.Alloy Structure Equivalency – Phase Formation and Identification – Mechanical Strength –
Hardness –Part Failure Analysis – Fatigue – Creep and Stress Rupture – Environmentally Induced
Failure Material Specification - Composition Determination - Microstructure Analysis Manufacturing Process Verification.

UNIT III DATA PROCESSING

9 Hours

Statistical Analysis – Data Analysis – Reliability and the Theory of Interference – Weibull Analysis – Data Conformity and Acceptance – Data Report – Performance Criteria – Methodology of Performance Evaluation – System Compatibility.

UNIT IV 3D SCANNING AND MODELLING

9 Hours

Introduction, working principle and operations of 3D scanners: Laser, White Light, Blue Light - Applications- Software for scanning and modelling: Types- Applications- Preparation techniques for Scanning objects- Scanning and Measuring strategies - Calibration of 3D Scanner- Step by step procedure: 3D scanning - Geometric modelling – 3D inspection- Case studies.

UNIT V INDUSTRIAL APPLICATIONS

9 Hours

TOTAL: 45 PERIODS

Reverse Engineering in the Automotive Industry; Aerospace Industry; Medical Device Industry. Case studies and Solving Industrial projects in Reverse Engineering.Legality: Patent – Copyrights –Trade Secret – Third-Party Materials.

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

- Apply the fundamental concepts and principles of reverse engineering in product design and development.
- Apply the concept and principles material characteristics, part durability and life limitation in reverse engineering of product design and development.

- Apply the concept and principles of material identification and process verification in reverse engineering of product design and development.
- Apply the concept and principles of data processing, part performance and system compatibility in reverse engineering of product design and development.
- Analyze the various legal aspect
- Applications of reverse engineering in product design and development.

TEXT BOOKS:

- 1. Robert W. Messler, Reverse Engineering: Mechanisms, Structures, Systems & Materials, 1st Edition, McGraw-Hill Education, 2014
- 2. Wego Wang, Reverse Engineering Technology of Reinvention, CRC Press, 2011

REFERENCES:

- 1. Scott J. Lawrence, Principles of Reverse Engineering, Kindle Edition, 2022
- 2. Kevin Otto and Kristin Wood, Product Design: Techniques in Reverse Engineering and New Product Development, Prentice Hall, 2001
- 3. Kathryn, A. Ingle, "Reverse Engineering", McGraw-Hill, 1994.
- 4. Linda Wills, "Reverse Engineering", Kluver Academic Publishers, 1996
- 5. Vinesh Raj and Kiran Fernandes, "Reverse Engineering: An Industrial Perspective", Springer-Verlag London Limited 2008.

OPR351

SUSTAINABLE MANUFACTURING

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To be acquainted with sustainability in manufacturing and its evaluation.
- To provide knowledge in environment and social sustainability.
- To provide the student with the knowledge of strategy to achieve sustainability.
- To familiarize with trends in sustainable operations.
- To create awareness in current sustainable practices in manufacturing industry.

UNIT – I ECONOMIC SUSTAINABILITY

ç

Industrial Revolution-Economic sustainability: globalization and international issues Sustainability status - Emerging issues- Innovative products- Reconfiguration manufacturing enterprises - Competitive manufacturing strategies - Performance evaluation- Management for sustainability - Assessments of economic sustainability

UNIT – II SOCIAL AND ENVIRONMENTAL SUSTAINABILITY

9

Social sustainability – Introduction-Work management -Human rights - Societal commitment - Customers -Business practices -Modelling and assessing social sustainability. Environmental issues pertaining to the manufacturing sector: Pollution - Use of resources -Pressure to reduce costs - Environmental management: Processes that minimize negative environmental impacts - environmental legislation and energy costs - need to reduce the carbon footprint of manufacturing Operations-Modelling and assessing environmental sustainability

UNIT – III SUSTAINABILITY PRACTICES

9

Sustainability awareness - Measuring Industry Awareness-Drivers and barriers -Availability of sustainability indicators -Analysis of sustainability practicing -Modeling and assessment of sustainable practicing -Sustainability awareness -Sustainability drivers and barriers - Availability of sustainability indicators- Designing questionnaires- Optimizing Sustainability Indexes-Elements -Cost and time model.

UNIT – IV MANUFACTURING STRATEGY FOR SUSTAINABILITY

Concepts of competitive strategy and manufacturing strategies and development of a strategic improvement programme - Manufacturing strategy in business success strategy formation and formulation - Structured strategy formulation - Sustainable manufacturing system design options - Approaches to strategy formulation - Realization of new strategies/system designs.

UNIT – V TRENDS IN SUSTAINABLE OPERATIONS

9

Principles of sustainable operations - Life cycle assessment manufacturing and service activities - influence of product design on operations - Process analysis - Capacity management - Quality management - Inventory management - Just-In-Time systems - Resource efficient design - Consumerism and sustainable well-being.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Discuss the importance of economic sustainability.

CO2: Describe the importance of sustainable practices.

CO3: Identify drivers and barriers for the given conditions.

CO4: Formulate strategy in sustainable manufacturing.

CO5: Plan for sustainable operation of industry with environmental, cost consciousness.

COs/Pos				100			POs	3		V. A.				PSO	S
&PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	- 1	2	-	-	-	2	2	-	1	1	2	2	2	1
CO2	3	-		-	-	-	2	-	-	1	1	2	1	2	2
CO3	3	-	- 1	-		-	2	3	-	1	1	2	1	2	2
CO4	3	-	3	-	-	-	2		-	1	1	2	2	2	1
CO5	3	-	3	-	-	-	2	2	-	1	1	2	2	2	1
CO/PO & PSO Average	3	-	3	-	-	-	2	2	-	1	1	2	2	2	1

- 1. Ibrahim Garbie, "Sustainability in Manufacturing Enterprises Concepts, Analyses and Assessments for Industry 4.0", Springer International Publishing., United States, 2016, ISBN-13: 978-3319293042.
- 2. Davim J.P., "Sustainable Manufacturing", John Wiley & Sons., United States, 2010,ISBN: 978-1-848-21212-

REFERENCES:

TEXT BOOKS:

- 1. Jovane F, Emper, W.E. and Williams, D.J., "The ManuFuture Road: Towards Competitive and Sustainable High-Adding-Value Manufacturing", Springer, 2009, United States, ISBN 978-3-540-77011-4.
- 2. Kutz M., "Environmentally Conscious Mechanical Design", John Wiley & Sons., United States, 2007, ISBN: 978-0-471-72636-4.
- 3. Seliger G., "Sustainable Manufacturing: Shaping Global Value Creation", Springer, United States, 2012, ISBN 978-3-642-27289-9.

COURSE OBJECTIVES:

The objective of this course is to prepare the students to know about the general aspects
of Electric and Hybrid Vehicles (EHV), including architectures, modelling, sizing, and sub
system design and hybrid vehicle control.

UNIT I DESIGN CONSIDERATIONS FOR ELECTRIC VEHICLES

9

Need for Electric vehicle- Comparative study of diesel, petrol, hybrid and electric Vehicles. Advantages and Limitations of hybrid and electric Vehicles. - Design requirement for electric vehicles- Range, maximum velocity, acceleration, power requirement, mass of the vehicle. Various Resistance- Transmission efficiency- Electric vehicle chassis and Body Design, Electric Vehicle Recharging and Refuelling Systems.

UNIT II ENERGY SOURCES

9

Battery Parameters - Different types of batteries - Lead Acid- Nickel Metal Hydride - Lithium ion-Sodium based - Metal Air. Battery Modelling - Equivalent circuits, Battery charging - Quick Charging devices. Fuel Cell- Fuel cell Characteristics - Fuel cell types - Half reactions of fuel cell. Ultra capacitors. Battery Management System.

UNIT III MOTORS AND DRIVES

9

Types of Motors- DC motors- AC motors, PMSM motors, BLDC motors, Switched reluctance motors working principle, construction and characteristics.

UNIT IV POWER CONVERTERS AND CONTROLLERS

9

Solid state Switching elements and characteristics – BJT, MOSFET, IGBT, SCR and TRIAC - Power Converters – rectifiers, inverters and converters - Motor Drives - DC, AC motor, PMSM motors, BLDC motors, Switched reluctance motors – four quadrant operations –operating modes

UNIT V HYBRID AND ELECTRIC VEHICLES

9

TOTAL: 45 PERIODS

Main components and working principles of a hybrid and electric vehicles, Different configurations of hybrid and electric vehicles. Power Split devices for Hybrid Vehicles - Operation modes - Control Strategies for Hybrid Vehicle - Economy of hybrid Vehicles - Case study on specification of electric and hybrid vehicles.

COURSE OUTCOMES:

At the end of this course, the student will be able to

- 1. Understand the operation and architecture of electric and hybrid vehicles
- Identify various energy source options like battery and fuel cell
- 3. Select suitable electric motor for applications in hybrid and electric vehicles.
- 4. Explain the role of power electronics in hybrid and electric vehicles
- 5. Analyze the energy and design requirement for hybrid and electric vehicles.

TEXT BOOKS:

- 1. Igbal Husain, "Electric and Hybrid Vehicles-Design Fundamentals", CRC Press, 2003
- 2. Mehrdad Ehsani, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles", CRCPress, 2005.

REFERENCES:

- 1. James Larminie and John Lowry, "Electric Vehicle Technology Explained " John Wiley & Sons.2003
- 2. Lino Guzzella, "Vehicle Propulsion System" Springer Publications, 2005
- 3. Ron HodKinson, "Light Weight Electric/ Hybrid Vehicle Design", Butterworth Heinemann Publication, 2005.

СО							PO							PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	2	1		3	2					2		1	3
2	1	1	2	1		3	2					2		1	3
3	1	1	2	1		3	2					2		1	3
4	1	1	2	1		3	2					2		1	3
5	1	1	2	1		3	2					2		1	3
Avg.	1	1	2	1		3	2					2		1	3

OAS352

SPACE ENGINEERING

L T P C 3 0 0 3

OBJECTIVES:

- Use the standard atmosphere tables and equations.
- > Find lift and drag coefficient data from NACA plots.
- > Apply the concept of static stability to flight vehicles.
- > Describe the concepts of stress, strain, Young's modulus, Poisson's ratio, yield strength.
- Demonstrate a basic knowledge of dynamics relevant to orbital mechanics.

UNIT I STANDARD ATMOSPHERE

6

History of aviation – standard atmosphere - pressure, temperature and density altitude.

UNIT II AERODYNAMICS

10

Aerodynamic forces – Lift generation Viscosity and its implications - Shear stress in a velocity profile - Lagrangian and Eulerian flow field - Concept of a streamline – Aircraft terminology and geometry - Aircraft types - Lift and drag coefficients using NACA data.

UNIT III PERFORMANCE AND PROPULSION

9

Viscous and pressure drag - flow separation - aerodynamic drag - thrust calculations -thrust/power available and thrust/power required.

UNIT IV AIRCRAFT STABILITY AND STRUCTURAL THEORY

10

Degrees of freedom of aircraft motions - stable, unstable and neutral stability - concept of static stability - Hooke's Law- brittle and ductile materials - moment of inertia - section modulus.

UNIT V SPACE APPLICATIONS

10

TOTAL: 45 PERIODS

History of space research - spacecraft trajectories and basic orbital manoeuvres - six orbital elements - Kepler's laws of orbits - Newtons law of gravitation.

OUTCOMES:

- Illustrate the history of aviation & developments over the years
- Ability to identify the types & classifications of components and control systems
- Explain the basic concepts of flight & Physical properties of Atmosphere
- Identify the types of fuselage and constructions.
- Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS:

- 1. John D. Anderson, Introduction to Flight, 8 th Ed., McGraw-Hill Education, New York, 2015.
- 2. E Rathakrishnan, "Introduction to Aerospace Engineering: Basic Principles of Flight", John Wiley, NJ, 2021.
- 3. Stephen. A. Brandt, " Introduction to Aeronautics: A design perspective " American Institute of Aeronautics & Camp; Astronautics, 1997.

REFERENCE:

1. Kermode, A.C., "Mechanics of Flight", Himalayan Book, 1997.

OIM351

INDUSTRIAL MANAGEMENT

LT P C 3 0 0 3

COURSE OBJECTIVES:

- To introduce fundamental concepts of industrial management
- To understand the approaches to the study of Management
- To learn about Decision Making, Organizing and leadership
- To analyze the Managerial Role and functions
- To know about the Supply Chain Management

UNIT I INTRODUCTION

9

Technology Management - Definition - Functions - Evolution of Modern Management - Scientific Management Development of Management Thought. Approaches to the study of Management, Forms of Organization - Individual Ownership - Partnership - Joint Stock Companies - Co-operative Enterprises - Public Sector Undertakings, Corporate Frame Work- Share Holders - Board of Directors - Committees - Chief Executive Line and Functional Managers, - Financial-Legal-Trade Union

UNIT II FUNCTIONS OF MANAGEMENT

9

Planning - Nature and Purpose - Objectives - Strategies - Policies and Planning Premises - Decision Making - Organizing - Nature and Process - Premises - Departmentalization - Line and staff - Decentralization - Organizational culture, Staffing - selection and training . Placement - Performance appraisal - Career Strategy - Organizational Development. Leading - Managing human factor - Leadership . Communication, Controlling - Process of Controlling - Controlling techniques, productivity and operations management - Preventive control, Industrial Safety.

UNIT III ORGANIZATIONAL BEHAVIOUR

9

Definition - Organization - Managerial Role and functions -Organizational approaches, Individual behaviour - causes - Environmental Effect - Behaviour and Performance, Perception - Organizational Implications. Personality - Contributing factors - Dimension — Need Theories - Process Theories - Job Satisfaction, Learning and Behaviour-Learning Curves, Work Design and approaches.

UNIT IV GROUPDYNAMICS

9

Group Behaviour - Groups - Contributing factors - Group Norms, Communication - Process - Barriers to communication - Effective communication, leadership - formal and informal characteristics - Managerial Grid - Leadership styles - Group Decision Making - Leadership Role in Group Decision, Group Conflicts - Types -Causes - Conflict Resolution -Inter group relations and conflict, Organization centralization and decentralization - Formal and informal - Organizational Structures Organizational Change and Development -Change Process - Resistance to Change - Culture and Ethics.

UNIT V MODERN CONCEPTS

9

Management by Objectives (MBO) - Management by Exception (MBE), Strategic Management - Planning for Future direction - SWOT Analysis -Evolving development strategies, information technology in management Decisions support system-Management Games Business Process Reengineering(BPR) -Enterprises Resource Planning (ERP) - Supply Chain Management (SCM) - Activity Based Management (AM) - Global Perspective - Principles and Steps Advantages and disadvantage

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1: Understand the basic concepts of industrial management

CO2: Identify the group conflicts and its causes.

CO3: Perform swot analysis

CO4: Analyze the learning curves

CO5: Understand the placement and performance appraisal

CO's PO's PSO's

REFERENCES:

Maynard H.B, "Industrial Engineering Hand book", McGraw-Hill, sixth 2008

CO's	PO's												PSO'	's	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1											2	1	
2		3	2	3											2
3	2	3	2	3									1	2	3
4	2	2	3	3										3	3
5	2	2											2		
AVg.	2	2.2	2.3	3									1.8	2	2.6

OIE354

QUALITY ENGINEERING

L T P C 3 0 0 3

COURSE OBJECTIVES

- Developing a clear knowledge in the basics of various quality concepts.
- Facilitating the students in understanding the application of control charts and its techniques.
- Developing the special control procedures for service and processoriented industries.
- Analyzing and understanding the process capability study.
- Developing the acceptance sampling procedures for incoming raw material.

UNIT I INTRODUCTION

9

Quality Dimensions—Quality definitions—Inspection-Quality control—Quality Assurance—Quality planning-Quality costs—Economics of quality—Quality loss function

UNIT II CONTROLCHARTS

9

Chance and assignable causes of process variation, statistical basis of the control chart, control charts for variables- X, R and S charts, attribute control charts - p, np, c and u- Construction and application.

UNIT III SPECIAL CONTROL PROCEDURES

9

Warning and modified control limits, control chart for individual measurements, multi-vari chart, *X*chart with a linear trend, chart for moving averages and ranges, cumulative-sum and exponentially weighted moving average control charts.

UNIT IV STATISTICAL PROCESS CONTROL

9

Process stability, process capability analysis using a Histogram or probability plots and control chart. Gauge capability studies, setting specification limits.

UNITY ACCEPTANCESAMPLING

9

TOTAL: 45 PERIODS

The acceptance sampling fundamental, OC curve, sampling plans for attributes, simple, double, multiple and sequential, sampling plans for variables, MIL-STD-105D and MIL-STD-414E&IS2500 standards.

COURSE OUTCOMES:

Students will be able to:

CO1: Control the quality of processes using control charts for variables in manufacturing industries.

CO2: Control the occurrence of defective product and the defects in manufacturing companies.

CO3: Control the occurrence of defects in services.

CO4: Analyzing and understanding the process capability study.

CO5: Developing the acceptance sampling procedures for incoming raw material.

	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	3		3			1	2			2	1		
2		3	3		3	3			3			3		2	
3	3	3	3		3				3			3	1		
4	3		2		3						1		1		
5		2			3				3			3			1
AVg.	2.6	2.7	2.7		3	3		1	2.7		1	2.7	1	2	1

OSF351

FIRE SAFETY ENGINEERING

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1:To enable the students to acquire knowledge of Fire and Safety Studies
- 2:To learn about the effect of fire on materials used for construction, the method of test for non-combustibility & fire resistance
- 3:To learn about fire area, fire stopped areas and different types of fire-resistant doors
- 4:To learn about the method of fire protection of structural members and their repair due to fire damage.
- 5:To develop safety professionals for both technical and management through systematic and quality-based study programmes

UNIT I INHERENT SAFETY CONCEPTS

Ç

Compartment fire-factors controlling fire severity, ventilation controlled and fuel controlled fires; Spread of fire in rooms, within building and between buildings. Effect of temperature on the properties of structural materials- concrete, steel, masonry and wood; Behavior of non-structural materials on fire- plastics, glass, textile fibres and other house hold materials.

UNIT II PLANT LOCATIONS

9

Compartment temperature-time response at pre-flashover and post flashover periods; Equivalence of fire severity of compartment fire and furnace fire; Fire resistance test on structural elements-standard heating condition, Indian standard test method, performance criteria.

UNIT III WORKING CONDITIONS

9

Fire separation between building- principle of calculation of safe distance. Design principles of fire resistant walls and ceilings; Fire resistant screens- solid screens and water curtains; Local barriers; Fire stopped areas-in roof, in fire areas and in connecting structures; Fire doors- Low combustible, Non-combustible and Spark-proof doors; method of suspension of fire doors; Air-tight sealing of doors;

UNIT IV FIRE SEVERITY AND REPAIR TECHNIQUES

9

Fabricated fire proof boards-calcium silicate, Gypsum, Vermiculite, and Perlite boards; Fire protection of structural elements - Wooden, Steel and RCC.. Reparability of fire damaged structures- Assessment of damage to concrete, steel, masonry and timber structures, Repair techniques- repair methods to reinforced concrete Columns, beams and slabs, Repair to steel structural members, Repair to masonry structures.

UNIT V WORKING AT HEIGHTS

9

TOTAL: 45 PERIODS

Safe Access - Requirement for Safe Work Platforms- Stairways - Gangways and Ramps-Fall Prevention & Fall Protection - Safety Belts - Safety nets - Fall Arrestors- Working on Fragile Roofs - Work Permit Systems-Accident Case Studies.

COURSE OUTCOMES

On completion of the course the student will be able to

CO1:Understand the effect of fire on materials used for construction

CO2:Understand the method of test for non-combustibility and fire resistance; and will be able to select different structural elements and their dimensions for a particular fire resistance rating of a building.

CO3:To understand the design concept of fire walls, fire screens, local barriers and fire doors and able to select them appropriately to prevent fire spread.

CO4:To decide the method of fire protection to RCC, steel, and wooden structural elements and their repair methods if damaged due to fire.

CO5:Describe the safety techniques and improve the analytical and intelligence to take the right decision at right time.

TEXT BOOKS

- 1. Roytman, M. Y,"Principles of fire safety standards for building construction". Amerind Publishing Co. Pvt. Ltd., New Delhi, 1975
- 2. John A. Purkiss,"Fire safety engineering design of structures" (2nd edn.), Butterworth Heinemann, Oxford, UK.2009.

REFERENCES:

- 1. Smith, E.E. and Harmathy, T.Z. (Editors),"Design of buildings for fire safety". ASTM Special Publication 685, American Society for Testing and Materials, Boston, U.S.A,1979.
- 2. Butcher, E. G. and Parnell, A. C, "Designing of fire safety". JohnWiley and Sons Ltd., New York, U.S.A.1983.
- 3. Jain, V.K,"Fire safety in buildings" (2nd edn.). New Age International(P) Ltd., New Delhi,2010. 4. Hazop&Hazan,"Identifying and Assessing Process Industry Hazards", Fourth Edition ,1999
- 4. Frank R. Spellman, Nancy E. Whiting,"The Handbook of Safety Engineering: Principles and Applications", 2009

CO's-PO's & PSO's MAPPING

	PO's												PSO's	•	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	-	1	-	-	1	-	-	-	-	-	-	-	-	-
2	-	-	3	-	- 1			-	-	-	-	-	-	-	-
3	1	-	2	- 1	- 1		3	-	- 1	1	4	- 1	-	-	-
4	-	-	-	-	-	1	1	-	-	-	1/-	-	-	-	-
5	2	-	1	-	h "-	1	1	1	-	1	-	1	-	-	-
AVg.	1.3	-	1.75	-		1	1.3	1		1	- 7	1	7-	-	-

OML351

INTRODUCTION TO NON-DESTRUCTIVE TESTING

L T P C 3 0 0 3

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- Understanding the basic importance of NDT in quality assurance.
- Imbibing the basic principles of various NDT techniques, its applications, limitations, codes and standards.
- Equipping themselves to locate a flaw in various materials, products.
- Applying apply the testing methods for inspecting materials in accordance with industry specifications and standards.
- Acquiring the knowledge on the selection of the suitable NDT technique for a given application

UNIT I INTRODUCTION TO NDT & VISUAL TESTING

9

Concepts of Non-destructive testing-relative merits and limitations-NDT Versus mechanical testing, Fundamentals of Visual Testing – vision, lighting, material attributes, environmental

factors, visual perception, direct and indirect methods – mirrors, magnifiers, boroscopes and fibroscopes – light sources and special lighting.

UNIT II LIQUID PENETRANT & MAGNETIC PARTICLE TESTING 9

Liquid Penetrant Inspection: principle, applications, advantages and limitations, dyes, developers and cleaners, Methods & Interpretation.

Magnetic Particle Inspection: Principles, applications, magnetization methods, magnetic particles, Testing Procedure, demagnetization, advantages and limitations, – Interpretation and evaluation of test indications.

UNIT III EDDY CURRENT TESTING & THERMOGRAPHY 9

Eddy Current Testing: Generation of eddy currents— properties— eddy current sensing elements, probes, Instrumentation, Types of arrangement, applications, advantages, limitations — Factors affecting sensing elements and coil impedance, calibration, Interpretation/Evaluation.

Thermography- Principle, Contact & Non-Contact inspection methods, Active & Passive methods, Liquid Crystal – Concept, example, advantages & limitations. Electromagnetic spectrum, infrared thermography- approaches, IR detectors, Instrumentation and methods, applications.

UNIT IV ULTRASONIC TESTING & AET

Ultrasonic Testing: Types of ultrasonic waves, characteristics, attenuation, couplants, probes, EMAT. Inspection methods-pulse echo, transmission and phased array techniques, types of scanning and displays, angle beam inspection of welds, time of flight diffraction (TOFD) technique, Thickness determination by ultrasonic method, Study of A, B and C scan presentations, calibration.

Acoustic Emission Technique – Introduction, Types of AE signal, AE wave propagation, Source location, Kaiser effect, AE transducers, Principle, AE parameters, AE instrumentation, Advantages & Limitations, Interpretation of Results, Applications.

UNIT V RADIOGRAPHY TESTING

9

9

Sources-X-rays and Gamma rays and their characteristics-absorption, scattering. Filters and screens, Imaging modalities-film radiography and digital radiography (Computed, Direct, Real Time, CT scan). Problems in shadow formation, exposure factors, inverse square law, exposure charts, Penetrameters, safety in radiography.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of this course, the students will be able to

- 1. Realize the importance of NDT in various engineering fields.
- 2. Have a basic knowledge of surface NDE techniques which enables to carry out various inspection in accordance with the established procedures.
- 3. Calibrate the instrument and inspect for in-service damage in the components by means of Eddy current testing as well as Thermography testing.
- 4. Differentiate various techniques of UT and AET and select appropriate NDT methods for better evaluation.
- 5. Interpret the results of Radiography testing and also have the ability to analyse the influence of various parameters on the testing.

TEXT BOOKS:

- 1. Baldev Raj, T. Jayakumar and M. Thavasimuthu, Practical Non Destructive Testing, Alpha Science International Limited, 3rd edition, 2002.
- 2. J. Prasad and C. G. K. Nair, Non-Destructive Test and Evaluation of Materials, Tata McGraw-Hill Education, 2nd edition, 2011.
- 3. Ravi Prakash, "Non-Destructive Testing Techniques", 1st revised edition, New Age International Publishers, 2010.

REFERENCES:

- 1. ASM Metals Handbook, V-17, "Nondestructive Evaluation and Quality Control", American Society of Metals, USA, 2001.
- 2. Barry Hull and Vernon John, "Nondestructive Testing", Macmillan, 1989.
- 3. Chuck Hellier, "Handbook of Nondestructive Evaluation", Mc Graw Hill, 2012.
- 4. Louis Cartz, "Nondestructive Testing", ASM International, USA, 1995.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
C01	2	2	2	3			2	2				2	1	2	
C02	3	1	2	2			2	2				2	2	2	1
C03	3	2	1	2			2	2				2	2	2	
CO4	3	1	2	2			2	2	74			2	2	2	2
CO5	3	2	2	2	1000		2	2				2	2	2	1
Avg	2.8	1.6	1.8	2.2			2	2		1/		2	1.8	2	1.3

OMR351 MECHATRONICS L T P C 3 0 0 3

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Selecting sensors to develop mechatronics systems.
- 2. Explaining the architecture and timing diagram of microprocessor, and also interpret and develop programs.
- 3. Designing appropriate interfacing circuits to connect I/O devices with microprocessor.
- 4. Applying PLC as a controller in mechatronics system.
- 5. Designing and develop the apt mechatronics system for an application.

UNIT – I INTRODUCTION AND SENSORS

9

Introduction to Mechatronics – Systems – Need for Mechatronics – Emerging areas of Mechatronics – Classification of Mechatronics. Sensors and Transducers: Static and Dynamic Characteristics of Sensor, Potentiometers – LVDT – Capacitance Sensors – Strain Gauges – Eddy Current Sensor – Hall Effect Sensor – Temperature Sensors – Light Sensors.

UNIT – II 8085 MICROPROCESSOR

9

Introduction – Pin Configuration - Architecture of 8085 – Addressing Modes – Instruction set, Timing diagram of 8085.

UNIT – III PROGRAMMABLE PERIPHERAL INTERFACE

9

Introduction – Architecture of 8255, Keyboard Interfacing, LED display – Interfacing, ADC and DAC Interface, Temperature Control – Stepper Motor Control – Traffic Control Interface.

UNIT – IV PROGRAMMABLE LOGIC CONTROLLER

9

Introduction – Architecture – Input / Output Processing – Programming with Timers, Counters and Internal relays – Data Handling – Selection of PLC.

UNIT – V ACTUATORS AND MECHATRONICS SYSTEM DESIGN

9

Types of Stepper and Servo motors – Construction – Working Principle – Characteristics, Stages of Mechatronics Design Process – Comparison of Traditional and Mechatronics Design Concepts with Examples – Case studies of Mechatronics Systems – Pick and Place Robot – Engine Management system – Automatic Car Park Barrier.

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

- CO1: Select sensors to develop mechatronics systems.
- CO2: Explain the architecture and timing diagram of microprocessor, and also interpret and develop programs.
- CO3: Design appropriate interfacing circuits to connect I/O devices with microprocessor.
- CO 4: Apply PLC as a controller in mechatronics system.
- CO 5: Design and develop the apt mechatronics system for an application.

TEXT BOOKS

- 1. Bolton W., "Mechatronics", Pearson Education, 6th Edition, 2015.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram International Publishing Private Limited, 6th Edition, 2013.

REFERENCES

- 1. Bradley D.A., Dawson D., Buru N.C. and Loader A.J., "Mechatronics", Chapman and Hall, 1993.
- 2. Davis G. Alciatore and Michael B. Histand, "Introduction to Mechatronics and Measurement systems", McGraw Hill Education, 2011.
- 3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", Cengage Learning, 2010.
- 4. Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", McGraw Hill Education, 2015.
- 5. Smaili. A and Mrad. F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.

		N	lapp	ing (of C	Os v	vith	POs	and	PSO:	S				
COs/POs &							POS	3					PS	SOs	
PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	3		2						2	3	2	3
CO2	3	2	1	3		2						2	3	2	3
CO3	3	2	1	3		2						2	3	2	3
CO4	3	2	1	3		2						2	3	2	3
CO5	3	2	1	3		2		-			//	2	3	2	3
CO/PO & PSO	3	2	1	3		2						2	3	2	3
Average															
3 6		1 -	– Sli	ght, 2	2 – N	Mode	erate	, 3 –	Sub	stanti	al	A			

ORA351

FOUNDATION OF ROBOTICS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To study the kinematics, drive systems and programming of robots.
- 2. To study the basics of robot laws and transmission systems.
- 3. To familiarize students with the concepts and techniques of robot manipulator, its kinematics.
- 4. To familiarize students with the various Programming and Machine Vision application in robots
- 5. To build confidence among students to evaluate, choose and incorporate robots in engineering systems.

UNIT – I FUNDAMENTALS OF ROBOT

9

Robot – Definition – Robot Anatomy – Co-ordinate systems, Work Envelope, types and classification – specifications – Pitch, yaw, Roll, Joint Notations, Speed of Motion, Pay Load – Robot Parts and their functions – Need for Robots – Different Applications.

UNIT – II ROBOT KINEMATICS

9

Forward kinematics, inverse kinematics and the difference: forward kinematics and inverse Kinematics of Manipulators with two, three degrees of freedom (in 2 dimensional), four degrees of freedom (in 3 dimensional) – derivations and problems. Homogeneous transformation matrices, translation and rotation matrices.

UNIT – III ROBOT DRIVE SYSTEMS AND END EFFECTORS

9

Pneumatic Drives – Hydraulic Drives – Mechanical Drives – Electrical Drives – D.C. Servo Motors, Stepper Motor, A.C. Servo Motors – Salient Features, Applications and Comparison of All These Drives. End Effectors – Grippers – Mechanical Grippers, Pneumatic and Hydraulic Grippers, Magnetic grippers, vacuum grippers, internal grippers and external grippers, selection and design considerations of a gripper

UNIT – IV SENSORS IN ROBOTICS

9

Force sensors, touch and tactile sensors, proximity sensors, non-contact sensors, safety considerations in robotic cell, proximity sensors, fail safe hazard sensor systems, and compliance mechanism. Machine vision system - camera, frame grabber, sensing and digitizing image data – signal conversion, image storage, lighting techniques, image processing and analysis – data reduction, segmentation, feature extraction, object recognition, other algorithms, applications – Inspection, identification, visual serving and navigation.

UNIT – V PROGRAMMING AND APPLICATIONS OF ROBOT

q

Teach pendant programming, lead through programming, robot programming languages – VAL programming – Motion Commands, Sensors commands, End-Effector Commands, and simple programs - Role of robots in inspection, assembly, material handling, underwater, space and medical fields.

TOTAL: 45 PERIODS

COURSE OUTCOMES

At the end of the course, students will be able to:

CO1: Interpret the features of robots and technology involved in the control.

CO2: Apply the basic engineering knowledge and laws for the design of robotics.

CO3: Explain the basic concepts like various configurations, classification and parts of end effectors compare various end effectors and grippers and tools and sensors used in robots.

CO4: Explain the concept of kinematics, degeneracy, dexterity and trajectory planning.

CO5: Demonstrate the image processing and image analysis techniques by machine vision system.

Mapping of COs with POs and PSOs															
COs/POs&	POs												PSOs		
PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	1	1		11.1	,,,					1			3
CO2	3	2	1	1								1			3
CO3	3	2	1	1								1			3
CO4	3	2	1	1								1			3
CO5	3	2	1	1								1			3
CO/PO & PSO															
Average															
		1 -	- Sli	ght, 2	2 – N	/lode	rate,	3 –	Subs	stanti	al				

TEXT BOOKS:

- 1. Ganesh.S.Hedge,"A textbook of Industrial Robotics", Lakshmi Publications, 2006.
- 2. Mikell.P.Groover, "Industrial Robotics Technology, Programming and applications" McGraw Hill 2ND edition 2012.

REFERENCES:

- 1. Fu K.S. Gonalz R.C. and ice C.S.G."Robotics Control, Sensing, Vision and Intelligence", McGraw Hill book co. 2007.
- 2. YoramKoren, "Robotics for Engineers", McGraw Hill Book, Co., 2002.
- 3. Janakiraman P.A., "Robotics and Image Processing", Tata McGraw Hill 2005.
- 4. John. J.Craig, "Introduction to Robotics: Mechanics and Control" 2nd Edition, 2002.
- 5. Jazar, "Theory of Applied Robotics: Kinematics, Dynamics and Control", Springer India reprint, 2010.

OAE352 FUNDAMENTALS OF AERONAUTICAL ENGINEERING

L T P C 3 0 0 3

OBJECTIVES:

- To acquire the knowledge on the Historical evaluation of Airplanes
- To learn the different component systems and functions
- To know the concepts of basic properties and principles behind the flight
- To learn the basics of different structures & construction
- To learn the various types of power plants used in aircrafts

UNIT I HISTORY OF FLIGHT

8

Balloon flight-ornithopter-Early Airplanes by Wright Brothers, biplanes and monoplanes, Developments in aerodynamics, materials, structures and propulsion over the years.

UNIT II AIRCRAFT CONFIGURATIONS AND ITS CONTROLS

10

Different types of flight vehicles, classifications-Components of an airplane and their functions-Conventional control, powered control- Basic instruments for flying-Typical systems for control actuation.

UNIT III BASICS OF AERODYNAMICS

9

Physical Properties and structures of the Atmosphere, Temperature, pressure and altitude relationships, Newton's Law of Motions applied to Aeronautics-Evolution of lift, drag and moment. Aerofoils, Mach number, Maneuvers.

UNIT IV BASICS OF AIRCRAFT STRUCTURES

9

General types of construction, Monocoque, semi-monocoque and geodesic constructions, typical wing and fuselage structure. Metallic and non-metallic materials. Use of Aluminium alloy, titanium, stainless steel and composite materials. Stresses and strains-Hooke's law- stress-strain diagrams-elastic constants-Factor of Safety.

UNIT V BASICS OF PROPULSION

9

Basic ideas about piston, turboprop and jet engines – use of propeller and jets for thrust production- Comparative merits, Principle of operation of rocket, types of rocket and typical applications, Exploration into space.

TOTAL: 45 PERIODS

OUTCOMES:

∃ Illustrata th	a history	of aircraft	& dayalanma	nts over the vears
I IIIuStiate ti	ie ilistory	oi airciait	& developine	iils ovei liie veais

- □ Ability to identify the types & classifications of components and control systems
- ☐ Explain the basic concepts of flight & Physical properties of Atmosphere
- ☐ Identify the types of fuselage and constructions.
- ☐ Distinguish the types of Engines and explain the principles of Rocket

TEXT BOOKS

1. Anderson, J.D., Introduction to Flight, McGraw-Hill; 8th edition , 2015

- 2. . E Rathakrishnan, "Introduction to Aerospace Engineering: Basic Principles of Flight", John Wiley, NJ, 2021
- 3. Stephen.A. Brandt, Introduction to aeronautics: A design perspective, 2nd edition, AIAA Education Series, 2004.

REFERENCE

- 1. SADHU SINGH, "INTERNAL COMBUSTION ENGINES AND GAS TURBINE"-, SS Kataraia & sons, 2015
- 2. KERMODE, "FLIGHT WITHOUT FORMULAE", -, Pitman; 4th Revised edition 1989

OGI351

REMOTE SENSING CONCEPTS

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the concepts of remote sensing processes and its components.
- To expose the various remote sensing platforms and sensors and to introduce the elements of data interpretation

UNIT I REMOTE SENSING AND ELECTROMAGNETIC RADIATION

Definition – components of RS – History of Remote Sensing – Merits and demerits of data collation between conventional and remote sensing methods - Electromagnetic Spectrum – Radiation principles - Wave theory, Planck's law, Wien's Displacement Law, Stefan's Boltzmann law, Kirchoff's law – Radiation sources: active & passive - Radiation Quantities

UNIT II EMR INTERACTION WITH ATMOSPHERE AND EARTH MATERIAL 9

Standard atmospheric profile – main atmospheric regions and its characteristics – interaction of radiation with atmosphere – Scattering, absorption and refraction – Atmospheric windows - Energy balance equation – Specular and diffuse reflectors – Spectral reflectance & emittance – Spectroradiometer – Spectral Signature concepts – Typical spectral reflectance curves for vegetation, soil and water – solid surface scattering in microwave region.

UNIT III ORBITS AND PLATFORMS

9

9

Motions of planets and satellites – Newton's law of gravitation - Gravitational field and potential - Escape velocity - Kepler's law of planetary motion - Orbit elements and types – Orbital perturbations and maneuvers – Types of remote sensing platforms - Ground based, Airborne platforms and Space borne platforms – Classification of satellites – Sun synchronous and Geosynchronous satellites – Lagrange Orbit.

UNIT IV SENSING TECHNIQUES

9

Classification of remote sensors – Resolution concept : spatial, spectral, radiometric and temporal resolutions - Scanners - Along and across track scanners – Optical-infrared sensors – Thermal sensors – microwave sensors – Calibration of sensors - High Resolution Sensors - LIDAR , UAV – Orbital and sensor characteristics of live Indian earth observation satellites

UNIT V DATA PRODUCTS AND INTERPRETATION

9

Photographic and digital products – Types, levels and open source satellite data products – selection and procurement of data– Visual interpretation: basic elements and interpretation keys - Digital interpretation – Concepts of Image rectification, Image enhancement and Image classification

TOTAL:45 PERIODS

COURSE OUTCOMES:

- •On completion of the course, the student is expected to
- CO 1 Understand the concepts and laws related to remote sensing
- CO 2 Understand the interaction of electromagnetic radiation with atmosphere and earth material

- CO 3 Acquire knowledge about satellite orbits and different types of satellites
- CO 4 Understand the different types of remote sensors
- CO 5 Gain knowledge about the concepts of interpretation of satellite imagery

TEXTBOOKS:

- 1. Thomas M.Lillesand, Ralph W. Kiefer and Jonathan W. Chipman, Remote Sensing and Image interpretation, John Wiley and Sons, Inc, New York, 2015.
- 2. George Joseph and C Jeganathan, Fundamentals of Remote Sensing, Third Edition Universities Press (India) Private limited, Hyderabad, 2018

REFERENCES:

- 1. Janza, F.Z., Blue H.M. and Johnson, J.E. Manual of Remote Sensing. Vol.1, American Society of Photogrametry, Virginia, USA, 2002.
- 2. Verbyla, David, Satellite Remote Sensing of Natural Resources. CRC Press, 1995
- 3. Paul Curran P.J. Principles of Remote Sensing. Longman, RLBS, 1988.
- 4. Introduction to Physics and Techniques of Remote Sensing, Charles Elachi and Jacob Van Zyl, 2006 Edition II, Wiley Publication.
- 5. Basudeb Bhatta, Remote Sensing and GIS, Oxford University Press, 2011

CO-PO MAPPING

			Cour	se Out	come		
РО	Graduate Attribute	CO1	CO2	CO3	CO4	CO5	Average
PO1	Engineering Knowledge	3	3	3	3	3	3
PO2	Problem Analysis			1	3	3	3
PO3	Design/Development of Solutions				3	3	3
PO4	Conduct Investigations of Complex Problems				3	3	3
PO5	Modern Tool Usage				3	3	3
PO6	The Engineer and Society						
PO 7	Environment and Sustainability						
PO 8	Ethics						
PO 9	Individual and Team Work		7.1				
PO 10	Communication						
PO 11	Project Management and Finance		1-1/2	/			
PO 12	Life-long Learning	3	1	3	3	3	3
PSO 1	Knowledge of Geoinformatics discipline	3	3	3	3	3	3
PSO 2	Critical analysis of Geoinformatics Engineering problems and innovations	3	3	3	3	3	3
PSO 3	Conceptualization and evaluation of Design solutions	3	3	3	3	3	3

OAI351

URBAN AGRICULTURE

LTPC 3 0 0 3

OBJECTIVES:

- To introduce the students the principles of agricultural crop production and the production practices of crops in modern ways.
- To delineate the role of agricultural engineers in relation to various crop production practices.

UNIT I INTRODUCTION

ç

Benefits of urban agriculture- economic benefits, environmental benefits, social and cultural benefits, educational, skill-building and job training benefits, health, nutrition and food accessibility benefits.

UNIT II VERTICAL FARMING

9

Vertical farming- types, green facade, living/green wall-modular green wall, vegetated mat wall-Structures and components for green wall system: plant selection, growing media, irrigation and plant nutrition: Design, light, benefits of vertical gardening. Roof garden and its types. Kitchen garden, hanging baskets: **The house plants/ indoor plants**

UNIT III SOIL LESS CULTIVATION

9

Hydroponics, aeroponics, aquaponics: merits and limitations, costs and Challenges, backyard gardens- tactical gardens- street landscaping- forest gardening, greenhouses, urban beekeeping

UNIT IV MODERN CONCEPTS

q

Growth of plants in vertical pipes in terraces and inside buildings, micro irrigation concepts suitable for roof top gardening, rain hose system, Green house, polyhouse and shade net system of crop production on roof tops

UNIT V WASTE MANAGEMENT

9

Concept, scope and maintenance of waste management- recycle of organic waste, garden wastes- solid waste management-scope, microbiology of waste, other ingredients like insecticide, pesticides and fungicides residues, waste utilization.

COURSE OUTCOMES

TOTAL: 45 PERIODS

- 1. Demonstrate the principles behind crop production and various parameters that influences the crop growth on roof tops
- 2. Explain different methods of crop production on roof tops
- 3. Explain nutrient and pest management for crop production on roof tops
- 4. Illustrate crop water requirement and irrigation water management on roof tops
- 5. Explain the concept of waste management on roof tops

TEXT BOOKS:

- 1. Martellozzo F and J S Landry. 2020. Urban Agriculture. Scitus Academics Llc.
- 2. Rob Roggema. 2016. Sustainable Urban Agriculture and Food Planning. Routledge Taylor and Francis Group.
- 3. Akrong M O. 2012. Urban Agriculture. LAP Lambert Academic Publishing.

REFERENCES:

- 1. Agha Rokh A. 2008. Evaluation of ornamental flowers and fishes breeding in Bushehr urban wastewater using a pilot-scale aquaponic system. Water and Wastewater, 19 (65): 47–53.
- 2. Agrawal M, Singh B, Rajput M, Marshall F and Bell J. N. B. 2003. Effect of air pollution on periurban agriculture: A case study. Environmental Pollution, 126 (3): 323–329. https://www.sciencedirect.com/science/article/pii/S0269749103002458#aep-section-id24.
- 3. Jac Smit and Joe Nasr. 1992. Urban agriculture for sustainable cities: using wastes and idle land and water bodies as resources. Environment and Urbanization, 4 (2):141-152.

CO-PO MAPPING

PO/PSO		CO1	CO2	CO3	CO4	CO5	Overall correlation of COs with POs
PO1	Engineering Knowledge	1	2	1	1	2	1
PO2	Problem Analysis	1	1	1	1	1	2
PO3	Design/ Development of Solutions	1	2	1	1	3	2
PO4	Conduct Investigations of Complex Problems	1	1	2	2	1	1
PO5	Modern Tool Usage	1	2	1	1	1	2
PO6	The Engineer and Society	1	2	1	2	1	1
PO7	Environment and sustainability	1	2	1	1	2	1
PO8	Ethics	2	1	1	1	2	1

PO9	Individual and team work:	1	1	2	1	1	1
PO10	Communication	1	2	1	1	2	1
PO11	Project management and finance	1	1	1	1	1	2
PO12	Life-long learning:	1	2	1	1	3	2
PSO1	To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill	1	2	1	1	2	1
PSO2	To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.	2	1	2	1	1	1
PSO3	To inculcate entrepreneurial skills through strong Industry-Institution linkage.	1	2	1	2	1	2

OEN351

DRINKING WATER SUPPLY AND TREATMENT

LTPC

3 0 0 3

OBJECTIVE:

 To equip the students with the principles and design of water treatment units and distribution system.

UNIT I SOURCES OF WATER

,

Public water supply system – Planning, Objectives, Design period, Population forecasting; Water demand – Sources of water and their characteristics, Surface and Groundwater – Impounding Reservoir – Development and selection of source – Source Water quality – Characterization – Significance – Drinking Water quality standards.

UNIT II CONVEYANCE FROM THE SOURCE

9

Water supply – intake structures – Functions; Pipes and conduits for water – Pipe materials – Hydraulics of flow in pipes – Transmission main design – Laying, jointing and testing of pipes – appurtenances – Types and capacity of pumps – Selection of pumps and pipe materials.

UNIT III WATER TREATMENT

9

Objectives – Unit operations and processes – Principles, functions, and design of water treatment plant units, aerators of flash mixers, Coagulation and flocculation – sand filters - Disinfection - Construction, Operation and Maintenance aspects.

UNIT IV ADVANCED WATER TREATMENT

ξ

Water softening – Desalination- R.O. Plant – demineralization – Adsorption - Ion exchange—Membrane Systems - Iron and Manganese removal - Defluoridation - Construction and Operation and Maintenance aspects

UNIT V WATER DISTRIBUTION AND SUPPLY

ί

Requirements of water distribution – Components – Selection of pipe material – Service reservoirs - Functions – Network design – Economics - Computer applications – Appurtenances – Leak detection - Principles of design of water supply in buildings – House service connection – Fixtures and fittings, systems of plumbing and types of plumbing.

TOTAL: 45 PERIODS

OUTCOMES

CO1: an understanding of water quality criteria and standards, and their relation to public health

CO2: the ability to design the water conveyance system

CO3: the knowledge in various unit operations and processes in water treatment

CO4: an ability to understand the various systems for advanced water treatment

CO5: an insight into the structure of drinking water distribution system

TEXTBOOKS:

- Garg. S.K., "Water Supply Engineering", Khanna Publishers, Delhi, September 2008. 1.
- 2. Punmia B.C. Arun K.Jain, Ashok K.Jain, "Water supply Engineering" Lakshmi publication private limited, New Delhi, 2016.
- 3. Rangwala "Water Supply and Sanitary Engineering", February 2022
- 4. Birdie.G.S., "Water Supply and Sanitary Engineering", Dhanpat Rai and sons, 2018.

REFERENCES:

- Fair. G.M., Geyer.J.C., "Water Supply and Wastewater Disposal", John Wiley and Sons, 1954.
- 2. Babbit.H.E, and Donald.J.J, "Water Supply Engineering", McGraw Hill book Co, 1984.
- 3.
- Steel. E.W.et al., "Water Supply Engineering", Mc Graw Hill International book Co, 1984. Duggal. K.N., "Elements of public Health Engineering", S.Chand and Company Ltd, New Delhi, 1998.

CO's-PO's & PSO's MAPPING

	PO's												PSO'	S	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		3						3		3			3		
2		3		2		2				3			3		
3				2		2				3			3		
4			3	2				3	2	3			3		
5			3	2			1		2	3	77	1			
Avg.		3	3	2	N. N.	2	1	3	2	3		1	3		

1.low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

OEE352

ELECTRIC VEHICLE TECHNOLOGY

LTPC 3003

COURSE OBJECTIVES

- To provide knowledge about electric machines and special machine
- To understand the basics of power converters
- To know the concepts of controlling DC and AC drive systems
- To understand the architecture and power train components.
- To impart knowledge on vehicle control for standard drive cycles of hybrid electrical vehicles (HEVs)

ROTATING POWER CONVERTERS UNIT I

Magnetic circuits- DC machine and AC machine -Working principle of Generator and Motor-DC and AC - Voltage and torque equations - Characteristics and applications. Working principle of special machines like: Brushless DC motor, Switched reluctance motor and PMSM.

UNIT II STATIC POWER CONVERTERS

9

Working and Characteristics of Power Diodes, MOSFET and IGBT. Working of uncontrolled rectifiers, controlled rectifiers (Single phase and Three phase), DC choppers, single and three phase inverters, Multilevel inverters and Matrix Converters.

UNIT III CONTROL OF DC AND AC MOTOR DRIVES

q

Speed control for constant torque, constant HP operation of all electric motors - DC/DC chopper based four quadrant operation of DC motor drives, inverter based V/f Operation (motoring and braking) of induction motor drives, Transformation theory, vector control operation of Induction motor and PMSM, Brushless DC motor drives, Switched reluctance motor (SRM) drives

UNIT IV HYBRID ELECTRIC VEHICLE ARCHITECTURE AND POWER TRAIN COMPONENTS

9

History of evolution of Electric Vehicles - Comparison of Electric Vehicles with Internal Combustion Engines - Architecture of Electric Vehicles (EV) and Hybrid Electric Vehicles (HEV) - Plug-in Hybrid Electric Vehicles (PHEV)- Power train components and sizing, Gears, Clutches, Transmission and Brakes.

UNIT V MECHANICS OF HYBRID ELECTRIC VEHICLES AND CONTROL OF VEHICLES

9

Fundamentals of vehicle mechanics - tractive force, power and energy requirements for standard drive cycles of HEV's - motor torque and power rating and battery capacity. HEV supervisory control - Selection of modes - power spilt mode - parallel mode - engine brake mode - regeneration mode - series parallel mode

TOTAL: 45 PERIODS COURSE OUTCOMES:

CO1: Able to understand the principles of conventional and special electrical machines. CO2: Acquired the concepts of power devices and power converters

CO3: Able to understand the control for DC and AC drive systems.

CO4: Learned the electric vehicle architecture and power train components.

CO5: Acquired the knowledge of mechanics of electric vehicles and control of electric vehicles.

	PO	PO	PO	PO	PO	PO	PS	PS	PS						
	1	2	3	4	5	6	7	8	9	10	11	12	O1	O2	O3
CO1	3	2			3						7 4		3	3	3
CO2	3	2	2			3			3				3	3	3
CO3	3			3		2	2						3	3	3
CO4	3	2	2		3								3	3	3
CO5	3		2	DE		UB	A III		W LE		2	100	3	3	3
Avg	3	2	2	3	3	1	2		3		2	UE	3	3	3

REFERENCES:

- 1 Stephen D. Umans, "Fitzgerald & Kingsley's Electric Machinery", Tata McGraw Hill, 7th Edition, 2020.
- 2 Bogdan M. Wilamowski, J. David Irwin, The Industrial Electronics Handbook, Second Edition, Power Electronics and Motor Drives, CRC Press, 2011
- Paul C. Krause, Oleg Wasynczuk, Scott D. Sudhoff, Steven D. Pekarek "Analysis of Electric Machinery and Drive Systems", 3rd Edition, Wiley-IEEE Press, 2013.
- 4 Rashid M.H., "Power Electronics Circuits, Devices and Applications ", Pearson, fourth Edition, 10th Impression 2021.
- 5 Igbal Husain, 'Electric and Hybrid Electric Vehicles', CRC Press, 2021.
- 6 Wei Liu, 'Hybrid Electric Vehicle System Modeling and Control', Second Edition, WILEY, 2017
- 7 James Larminie and John Lowry, 'Electric Vehicle Technology Explained', Second Edition, Wiley, 2012

OEI353

INTRODUCTION TO PLC PROGRAMMING

LT P C 3 0 0 3

COURSE OBJECTIVES:

- 1. Understand basic PLC terminologies digital principles, PLC architecture and operation.
- 2. Familiarize different programming language of PLC.
- 3. Develop PLC logic for simple applications using ladder logic.
- 4. Understand the hardware and software behind PLC and SCADA.
- 5. Exposures about communication architecture of PLC/SCADA.

UNIT I INTRODUCTION TO PLC

9

Introduction to PLC: Microprocessor, I/O Ports, Isolation, Filters, Drivers, Microcontrollers/DSP, PLC/DDC- PLC Construction: What is a PLC, PLC Memories, PLC I/O, , PLC Special I/O, PLC Types.

UNIT II PLC INSTRUCTIONS

9

PLC Basic Instructions: PLC Ladder Language- Function block Programming- Ladder/Function Block functions- PLC Basic Instructions, Basic Examples (Start Stop Rung, Entry/Reset Rung)-Configuration of Sensors, Switches, Solid State Relays-Interlock examples- Timers, Counters, Examples.

UNIT III PLC PROGRAMMING

9

Different types of PLC program, Basic Ladder logic, logic functions, PLC module addressing, registers basics, basic relay instructions, Latching Relays, arithmetic functions, comparison functions, data handling, data move functions, timer-counter instructions, input-output instructions, sequencer instructions

UNIT IV COMMUNICATION OF PLC AND SCADA

9

Communication Protocol – Modbus, HART, Profibus- Communication facilities SCADA: Hardware and software, Remote terminal units, Master Station and Communication architectures

UNIT V CASE STUDIES

9

Stepper Motor Control- Elevator Control-CNC Machine Control- conveyor control-Interlocking Problems

TOTAL:45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc)

1. Market survey of the recent PLCs and comparison of their features.

- 2. Summarize the PLC standards
- 3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
- 4. Market survey of Communication Network Used for PLC/SCADA.

COURSE OUTCOMES:

- CO1 Know the basic requirement of a PLC input/output devices and architecture. (L1)
- CO2 Ability to apply Basics Instruction Sets used for ladder Logic and Function Block Programming.(L2)
- CO3 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
- **CO4** Able to develop a PLC logic for a specific application on real world problem. (L5)
- CO5 Ability to Understand the Concepts of Communication used for PLC/SCADA.(L1)

TEXT BOOKS:

- 1. Frank Petruzzula, Programmable Logic Controllers, Tata Mc-Graw Hill Edition
- 2. John W. Webb, Ronald A. Reis, Programmable Logic Controllers Principles and Applications, PHI publication

REFERENCES:

- 1. MadhuchanndMitra and SamerjitSengupta, Programmable Logic Controllers Industrial Automation an Introduction, Penram International Publishing Pvt. Ltd.
- 2. J. R. Hackworth and F. D. Hackworth, Programmable Logic Controllers Principles andApplications, Pearson publication

List of Open Source Software/ Learning website:

- 1. https://nptel.ac.in/courses/108105063
- 2. https://www.electrical4u.com/industrial-automation/
- 3. https://www.etf.ues.rs.ba/~slubura/Procesni%20racunari/Programmable%20Logic%20 Controllers%20Programming%20Methods.pdf
- 4. https://www.electrical4u.com/industrial-automation/

MAPPING COURSE OUTCOMES WITH PROGRAMME OUTCOMES

PO,PSO CO	PO 01	PO 02	PO 03	PO 04	PO 05	PO 06	PO 07	PO 08	PO 09	PO 10	PO 11	PO 12	PSO 1	PSO 2	PSO 3
CO1	3	2	1					1		1					
CO2	3	3	2					1		1	2				2
CO3	3	3	3	3	1			1		1					
CO4	3	3		3	3			1		1			3	3	
CO5	3	3	3	2	1			1	4	1	1		3	3	3
Avg	3	2.9	2.25	2.6	1.6			1	-	1	17		3	3	2.9

OFD352

TRADITIONAL INDIAN FOODS

LTPC 3003

OBJECTIVE:

• To help students acquire a sound knowledge on diversities of foods, food habits and patterns in India with focus on traditional foods.

UNIT I HISTORICAL AND CULTURAL PERSPECTIVES

9

Food production and accessibility - subsistence foraging, horticulture, agriculture and pastoralization, origin of agriculture, earliest crops grown. Food as source of physical sustenance, food as religious and cultural symbols; importance of food in understanding human culture - variability, diversity, from basic ingredients to food preparation; impact of customs and traditions on food habits, heterogeneity within cultures (social groups) and specific social contexts - festive occasions, specific religious festivals, mourning etc. Kosher, Halal foods; foods for religious and other fasts.

UNIT II TRADITIONAL METHODS OF FOOD PROCESSING

9

Traditional methods of milling grains – rice, wheat and corn – equipments and processes as compared to modern methods. Equipments and processes for edible oil extraction, paneer, butter and ghee manufacture – comparison of traditional and modern methods. Energy costs, efficiency, yield, shelf life and nutrient content comparisons. Traditional methods of food preservation – sundrying, osmotic drying, brining, pickling and smoking.

UNIT III TRADITIONAL FOOD PATTERNS

9

Typical breakfast, meal and snack foods of different regions of India.Regional foods that have gone Pan Indian / Global. Popular regional foods; Traditional fermented foods, pickles and preserves, beverages, snacks, desserts and sweets, street foods; IPR issues in traditional foods

UNIT IV COMMERCIAL PRODUCTION OF TRADITIONAL FOODS

(

Commercial production of traditional breads, snacks, ready-to-eat foods and instant mixes, frozen foods – types marketed, turnover; role of SHGs, SMES industries, national and multinational

companies; commercial production and packaging of traditional beverages such as tender coconut water, neera, lassi, buttermilk, dahi. Commercial production of intermediate foods – ginger and garlic pastes, tamarind pastes, masalas (spice mixes), idli and dosa batters.

UNIT V HEALTH ASPECTS OF TRADIONAL FOODS

9

Comparison of traditional foods with typical fast foods / junk foods - cost, food safety, nutrient composition, bioactive components; energy and environmental costs of traditional foods; traditional foods used for specific ailments /illnesses.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

CO1To understand the historical and traditional perspective of foods and food habits CO2 To understand the wide diversity and common features of traditional Indian foods and meal patterns.

TEXT BOOKS:

- 1. Sen, Colleen Taylor "Food Culture in India" Greenwood Press, 2005.
- 2. Davidar, Ruth N. "Indian Food Science: A Health and Nutrition Guide to Traditional Recipes: East West Books, 2001.

OFD353

INTRODUCTION TO FOOD PROCESSINGS

L T P C 3 0 0 3

OBJECTIVE:

The course aims to introduce the students to the area of Food Processing. This is necessary
for effective understanding of a detailed study of food processing and technology subjects.
This course will enable students to appreciate the importance of food processing with respect
to the producer, manufacturer and consumer.

UNIT I PROCESSING OF FOOD AND ITS IMPORTANCE

9

Source of food - plant, animal and microbial origin; different foods and groups of foods as raw materials for processing - cereals, pulses, grains, vegetables and fruits, milk and animal foods, sea weeds, algae, oil seeds & fats, sugars, tea, coffee, cocoa, spices and condiments, additives; need and significance of processing these foods.

UNIT II METHODS OF FOOD HANDLING AND STORAGE

9

Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.

UNIT III LARGE-SCALE FOOD PROCESSING

12

Milling of grains and pulses; edible oil extraction; Pasteurisation of milk and yoghurt; canning and bottling of foods; drying – Traditional and modern methods of drying, Dehydration of fruits, vegetables, milk, animal products etc; preservation by use of acid, sugar and salt; Pickling and curing with microorganisms, use of salt, and microbial fermentation; frying, baking, extrusion cooking, snack foods.

UNIT IV FOOD WASTES IN VARIOUS PROCESSES

6

Waste disposal-solid and liquid waste; rodent and insect control; use of pesticides; ETP; selecting and installing necessary equipment.

UNIT V FOOD HYGIENE

9

Food related hazards – Biological hazards – physical hazards – microbiological considerations in foods. Food adulteration – definition, common food adulterants, contamination with toxic metals, pesticides and insecticides; Safety in food procurement, storage handling and preparation;

Relationship of microbes to sanitation, Public health hazards due to contaminated water and food; Personnel hygiene; Training& Education for safe methods of handling and processing food; sterilization and disinfection of manufacturing plant; use of sanitizers, detergents, heat, chemicals, Cleaning of equipment and premises.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

On completion of the course the students are expected to

CO1 Be aware of the different methods applied to processing foods.

CO2 Be able to understand the significance of food processing and the role of foodand beverage industries in the supply of foods.

TEXT BOOKS/REFERENCES:

- 1. Karnal, Marcus and D.B. Lund "Physical Principles of Food Preservation". Rutledge, 2003.
- 2. VanGarde, S.J. and Woodburn. M "Food Preservation and Safety Principles and Practice". Surbhi Publications. 2001.
- 3. Sivasankar, B. "Food Processing & Preservation", Prentice Hall of India, 2002.
- 4. Khetarpaul, Neelam, "Food Processing and Preservation", Daya Publications, 2005.

OCH351

NANO TECHNOLOGY

L T P C 3 0 0 3

UNIT I INTRODUCTION

8

General definition and size effects-important nano structured materials and nano particles-importance of nano materials- Size effect on thermal, electrical, electronic, mechanical, optical and magnetic properties of nanomaterials- surface area - band gap energy and applications. Photochemistry and Electrochemistry of nanomaterials -lonic properties of nanomaterials- Nano catalysis.

UNIT II SYNTHESIS OF NANOMATERIALS

8

Bottom up and Top-down approach for obtaining nano materials - Precipitation methods – sol gel technique – high energy ball milling, CVD and PVD methods, gas phase condensation, magnetron sputtering and laser deposition methods – laser ablation, sputtering.

UNIT III NANO COMPOSITES

10

Definition- importance of nanocomposites- nano composite materials-classification of compositesmetal/metal oxides, metal-polymer- thermoplastic based, thermoset based and elastomer basedinfluence of size, shape and role of interface in composites applications.

UNIT IV NANO STRUCTURES AND CHARACTERIZATION TECHNIQUES 10

Classifications of nanomaterials - Zero dimensional, one-dimensional and two-dimensional nanostructures- Kinetics in nanostructured materials- multilayer thin films and superlattice-clusters of metals, semiconductors and nanocomposites. Spectroscopic techniques, Diffraction methods, thermal analysis method, BET analysis method.

UNIT V APPLICATIONS OF NANO MATERIALS

9

Overview of nanomaterials properties and their applications, nano painting, nano coating, nanomaterials for renewable energy, Molecular Electronics and Nanoelectronics – Nanobots-Biological Applications. Emerging technologies for environmental applications- Practice of nanoparticles for environmental remediation and water treatment.

TOTAL: 45 PERIODS

OUTCOMES:

CO1 - understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications.

CO2 – able to acquire knowledge about the different types of nano material synthesis

- CO3 describes about the shape, size, structure of composite nano materials and their interference
- CO4 understand the different characterization techniques for nanomaterials
- CO5 develop a deeper knowledge in the application of nanomaterials in different fields.

TEXT BOOKS

- 1. Mick Wilson, Kamali Kannangara, Geoff Smith, Michelle Simmom, Burkhard Raguse, "Nano Technology: Basic Science & Engineering Technology", 2005, Overseas Press
- 2. G. Cao, "Nanostructures & Nanomaterials: Synthesis, Properties & Applications" Imperial College Press, 2004
- 3.William A Goddard "Handbook of Nanoscience, Engineering and Technology", 3rd Edition, CRC Taylor and Francis group 2012.

REFERENCES

- 1. R.H.J.Hannink & A.J.Hill, Nanostructure Control, Wood Head Publishing Ltd., Cambridge, 2006.
- 2. C.N.R.Rao, A.Muller, A.K.Cheetham, The Chemistry of Nanomaterials: Synthesis, Properties and Applications Vol. I & II, 2nd edition, 2005, Wiley VCH Verlag Gibtl & Co
- 3. Ivor Brodie and Julius J.Muray, 'The physics of Micro/Nano Fabrication', Springer International Edition, 2010

Course articulation matrix

Cour		A		F	Prograi	m Outo	comes		W							
se Outc ome s	Statements	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	P 08	P O 9	P O 10	PO 11	P O 12	P S O 1	P S O 2	PSO 3
CO1	understand the basic properties such as structural, physical, chemical properties of nanomaterials and their applications	2	3	2	3	3				1	1		3	1	1	3
CO2	acquire knowledge about the different types of nano material synthesis	2	3	1	3	3	3			1	1	Ö	3	2	1	3
CO3	describes about the shape, size,structure of composite nano materials and their interference	2	2	2	3	3	1 	1	W	1	10	ī	3	2	1	3
CO4	understand the different characterization techniques for nanomaterials	2	2	1	3	3	1	1	1	1	-	1	3	1	1	3
CO5	develop a deeper knowledge in the application of nanomaterials in different fields	2	2	1	3	3	1	1	1	1	-	1	3	2	1	3
	Overall CO	2	2	1	3	3	1	1	1	1	1	1	3	2	1	3

OCH352

FUNCTIONAL MATERIALS

LT P C 3 0 0 3

OBJECTIVE:

 The course emphasis on the molecular safe assembly and materials for polymer electronics

UNIT I INTRODUCTION

9

Historical Perspectives, Lessons from the Nature, Engineering the Functions, Tuning the functions, Multiscale Modeling and Computation, Classification of Functional Materials, Functional Diversity of Materials, Hybrid Materials, Technological Relevance, Societal Impact.

UNIT II MOLECULAR SELF ASSEMBLY

9

Molecular Organization, Self-Assembly in Biology, Energetics of Self-Organization, A Few Case Studies, Synthetic Protocols and Challenges, Solvent-assisted Self-Assembly, Directed Assembly-Langmuir-Blodgett and Langmuir-Schaefer techniques, Technological Applications of SAMs.

UNIT III BIO-INSPIRED MATERIALS

9

Bio-inspired materials, Classification, Biomimicry, Spider Silk, Lotus Leaf, Gecko feet, Synovial fluid, 'Bionics'-Bio-inspired Information Technologies, Artificial Sensory Organs, Biomineralization-En route to Nanotechnology.

UNIT IV SMART OR INTELLIGENT MATERIALS

9

Criteria for Smartness, Significance of Smart Materials, Representative Examples like Smart Gels and Polymers, Electro/Magneto Rheological Fluids, Smart Electroceramics, Technical Limitations and Challenges, Functional Nanocomposites, Polymer-carbon nanotube composities.

UNIT V MATERIALS FOR POLYMER ELECTRONICS

a

Polymers for Electronics, Organic Light Emitting Diodes, Working Principle of OLEDs, Illustrated Examples, Organic Field-Effect Transistors Operating Principle, Design Considerations, Polymer FETs vs Inorganic FETs, Liquid Crystal Displays, Engineering Aspects of Flat Panel Displays, Intelligent Polymers for Data Storage, Polymer-based Data Storage-Principle, Magnetic Vs. Polymer-based Data Storage.

OUTCOME:

TOTAL: 45 PERIODS

 Students will be able to differentiate among various functional properties and select appropriate material for certain functional applications, analyze the nature and potential of functional material.

TEXT BOOK:

1. Vijayamohanan K. Pillai and MeeraParthasarathy, "Functional Materials: A chemist's perpective", Universities Press Hyderabad (2012).

REFERENCE:

1. Stephen Manne "Biomimetic Materials Chemistry" Wiley-VCH Newyork, 1966.

OTT351

BASICS OF TEXTILE FINISHING

LT PC 3 0 0 3

OBJECTIVE:

 To enable the students to understand the basics and different types of finishes required for textile materials and machines used for finishing.

UNIT I RESIN FINISHING

9

Importance of finishing and its classification. Resin finishing: Mechanism of creasing, Types of Resins .Anti crease, wash and wear, durable press resin finishing. Study about eco friendly method of anti crease finishing.

UNIT II FLAME PROOF & WATERPROOF

q

Concept of Flame proof & flame retardancy. Flame retardant finishes for cotton, Concept of waterproof and water repellent Finishes, Durable & Semi durable and Temporary finishes, Concept of Antimicrobial finish.

UNIT III SOIL RELEASE AND ANTISTATIC FINISHES

9

Soil Release Finishing: Mechanism of soil retention & soil release. Anti pilling Finishing: chemical and mechanical methods to produce anti pilling. Concept of UV Protection finishes- Concept of antistatic finishes.

UNIT IV MECHANICAL FINISHES

9

Mechanical finishing of textile materials - calendaring, compacting, Sanforising, Peach finishing. Object of Heat setting. Various methods of heat setting and mechanism of heat setting.

UNIT V STIFFENING AND SOFTENING

9

Concept of stiffening and softening of textile materials. Mechanism in the weight reduction of PET .Concept of Micro encapsulation techniques in finishing process, Nano finish, Plasma Treatment and Bio finishing.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to Understand the

- CO: 1 Basics of Resin Finishing Process.
- CO:2 Concept of Flame proof & flame retardancy, waterproof and water repellent, Antimicrobial finishes.
- CO: 3 Concept of Soil Release, Anti Pilling, UV Protection and Antistatic finishes.
- CO: 4 Concept of Mechanical finishing.
- CO: 5 Basics of Micro encapsulation techniques, Nano finish, Plasma Treatment.

TEXT BOOKS:

- 1. V.A.Shennai, "Technology of Finishing", Vol X, Sevak Publications, Mumbai
- 2. Perkins, W.S., "Textile colouration and finishing", Carolina Academic Press., U.K, ISBN: 0890898855.2004.

REFERENCES:

- 1. Microencapsulation in finishing, Review of progress of Colouration, SDC, 2001 62
- 2. Chakraborty, J.N, Fundamentals and Practices in colouration of Textiles, Woodhead Publishing India, 2009, ISBN-13:978-81-908001-4-3
- 3. W. D. Schindler and P. J. Hauser "Chemical finishing of textiles", Woodhead Publishing Cambridge England, 2004.

OTT352 INDUSTRIAL ENGINEERING FOR GARMENT INDUSTRY

LTPC 3003

OBJECTIVES:

 To enable the students to learn about basics of industrial engineering and different tools of industrial engineering and its application in apparel industry

UNIT I INTRODUCTION

9

Scope of industrial engineering in apparel Industry, role of industrial engineers.

Productivity: Definition - Productivity, Productivity measures .Reduction of work content due to the product and process, Reduction of ineffective time due to the management, due to the worker. Causes for low productivity in apparel industry and measures for improvement.

UNIT II WORK STUDY

9

Definition, Purpose, Basic procedure and techniques of work-study.

Work environment – Lighting, Ventilation, Climatic condition on productivity. Temperature control, humidity control, noise control measures. Safety and ergonomics on work station and work environment

Material Handling – Objectives, Classification and characteristics of material handling equipments, Specialized material handling equipments.

UNIT III METHOD STUDY

9

Definition, Objectives, Procedure, Process charts and symbols. Various charts – Charts indicating process sequence: Outline process chart, flow process chart (man type, material type and equipment type); Charts using time scale – multiple activity chart. Diagrams indicating movement – flow diagram, string diagram, cycle graph, chrono cycle graph, travel chart **MOTION STUDY:** Principle of motion economy, Two handed process chart, micro motion analysis – therbligs, SIMO chart.

UNIT IV WORK MEASUREMENT

9

Definition, purpose, procedure, equipments, techniques. Time study - Definition, basics of time study- equipments. Time study forms, Stop watch procedure. Predetermined motion time standards (PMTS). Time Study rating, calculation of standard time, Performance rating – relaxation and other allowances. Calculation of SAM for different garments, GSD.

UNIT V WORK STUDY APPLICATION

ć

Application of work study techniques in cutting, stitching and packing in garment industry. Workaids in sewing, Pitch diagram, Line balancing, Capacity planning, scientific method of training.

TOTAL: 45 PERIODS

OUTCOMES:

Upon the completion of the course the student shall be able to understand

CO1: Fundamental concepts of industrial Engineering and productivity

CO2: Method study

CO3: Motion analysis

CO4: Work measurement and SAM

CO5: Ergonomics and its application to garment industry

TEXTBOOKS:

- George Kanwaty, "Introduction to Work Study ", ILO, Geneva, 1996, ISBN: 9221071081 |ISBN-13: 9789221071082
- 2. Enrick N. L., "Time study manual for Textile industry", Wiley Eastern (P) Ltd., 1989, ISBN: 0898740444 | ISBN-13: 9780898740448
- 3. Khanna O. P., and Sarup A., "Industrial Engineering and Management", Dhanpat Rai Publications, New Delhi, 2010, ISBN: 818992835X / ISBN: 978-8189928353

REFERENCES

- 1. Norberd Lloyd Enrick., "Industrial Engineering Manual for Textile Industry", Wiley Eastern (P) Ltd., New Delhi, 1988, ISBN: 0882756311 | ISBN-13: 9780882756318
- 2. Chuter A. J., "Introduction to Clothing Production Management", Wiley-Black well Science, U.S. A., 1995, ISBN: 0632039396 | ISBN-13: 9780632039395
- 3. GordanaColovic., "Ergonomics in the garment industry", Wood publishing India Pvt. Ltd., India, 2014, ISBN: 0857098225 | ISBN-13: 9780857098221

4. Rajesh Bheda, "Managing Productivity in Apparel Industry "CBS Publishers & Distributors, 2008

Course Articulation Matrix:

Cours	3c Articulation	Progr		utcon	пе											
e Outcom es	Statement	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	P 0 10	P 0 11	P O 12	PS O 1	PS O 2	PSO 3
CO1	Fundament al concepts of industrial Engineering and productivity	2	2	3	3	2	1	1	2	2	1	2	2	1	1	-
CO2	Method study	1	2	3	3	2	1	1	2	2	1	2	2	1	1	-
CO3	Motion analysis	1	2	3	3	2	1	1	2	2	1	2	2	1	1	-
CO4	Work measureme nt and SAM	1	2	3	3	2	1	1	2	2	1	3	2	1	1	-
CO5	Ergonomics and its application to garment industry	1	2	3	3	2	1	2	2	2	1	3	2	1	1	-
Overall C		1. 2	2	3	3	2	1	1.2	2	2	1	2.4	2	1	1	-

^{1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OTT353

BASICS OF TEXTILE MANUFACTURE

LTPC 3003

OBJECTIVES:

To enable the students to learn about the basics of fibre forming, yarn production, fabric formation, coloration of fabrics and garment manufacturing

UNIT I NATURAL FIBRES

9

Introduction: Definition of staple fibre, filament; Classification of natural and man-made fibres, essential and desirable properties of fibres. Production and cultivation of Natural Fibers: Cultivation of cotton, production of silk (sericulture), wool and jute – physical and chemical structure of these fibres..

UNIT II REGENERATED AND SYNTHETIC FIBRES

9

Production sequence of regenerated and modified cellulosic fibres: viscose rayon, Acetate Rayon, high wet modulus and high tenacity fibres; synthetic fibres – chemical structure, fibre forming polymers, production principles.

UNIT III BASICS OF SPINNING

9

Spinning – principle of yarn formation, sequence of machines for yarn production with short staple fibres and blends, principles of opening and cleaning machines; yarn numbering - calculations

UNIT IV BASICS OF WEAVING

9

Woven fabric – warp, weft, weaving, path of warp; looms – classification, handloom and its parts, powerloom, automatic looms, shuttleless looms, special type of looms; preparatory machines for weaving process and their objectives; basic weaving mechanism - primary, secondary and auxiliary mechanisms,

UNIT V BASICS OF KNITTING AND NONWOVEN

9

Knitting – classification, principle, types of fabrics; nonwoven process –classification, principle, types of fabrics.

TOTAL: 45 PERIODS

OUTCOMES:

On completion of this course, the students shall have the basic knowledge on

CO1: Classification of fibres and production of natural fibres

CO2: Regenerated and synthetic fibres

CO3: Yarn spinning

CO4: Weaving

CO5: Knitting and nonwoven

TEXTBOOKS

- 1. Mishra S. P., "A Text Book of Fibre Science and Technology", New Age Publishers, 2000, ISBN: 8122412505
- 2. Marks R., and Robinson. T.C., "Principles of Weaving", The Textile Institute, Manchester, 1989, ISBN: 0 900739 258.
- 3. Spencer D.J., "Knitting Technology", III Ed., Textile Institute, Manchester, 2001, ISBN: 185573 333 1.

REFERENCES:

- 1. Hornberer M., Eberle H., Kilgus R., Ring W. and Hermeling H., "Clothing Technology: From Fibre to Fabric", Europa LehrmittelVerlag, 2008, ISBN: 3808562250 / ISBN: 978-3808562253.
- 2. Wynne A., "Motivate Series-Textiles", Maxmillan Publications, London, 1997.
- Carr H. and Latham B., "The Technology of Clothing Manufacture" Backwell Science, U.K., 1994, ISBN: 0632037482 / ISBN:13: 9780632037483. Klein W., "The Rieter Manual of Spinning, Vol.1", Rieter Machine Works Ltd., Winterthur, 2014, ISBN 10 3-9523173-1-4 / ISBN 13 978-3-9523173-1-0.
- 4. Klein W., "The Rieter Manual of Spinning, Vol.2", Rieter Machine Works Ltd., Winterthur, 2014. ISBN 10 3-9523173-2-2 / ISBN 13 978-3-9523173-2-7.
- 5. Klein W., "The Rieter Manual of Spinning, Vol.1-3", Rieter Machine Works Ltd., Winterthur, 2014, ISBN 10 3-9523173-3-0 / ISBN 13 978-3-9523173-3-4.
- 6. Talukdar. M.K., Sriramulu. P.K., and Ajgaonkar. D.B., "Weaving: Machines, Mechanisms, Management", Mahajan Publishers, Ahmedabad, 1998, ISBN: 81-85401-16-0.
- 7. Morton W. E., and Hearle J. W. S., "Physical Properties of Textile Fibres", The Textile Institute, Washington D.C., 2008, ISBN 978-1-84569-220-95
- 8. Gohl E. P. G., "Textile Science", CBS Publishers and distributors, 1987, ISBN 0582685958

Course Articulation Matrix:

Cours	Statement	Prog	jram	Out	com	е										
e Outco mes		PO 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P O 8	P O 9	P O 10	P O 11	P O 12	P S O 1	P S O 2	PS O3
CO1.	Classification of fibres and production of natural fibres	-	1	-	-	-	-	-	2	1	1	1	1	-	1	-
CO2.	Regenerated and synthetic fibres	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-
CO3.	Yarn spinning	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-
CO4.	Weaving	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-
CO5.	Knitting and nonwoven	-		-	-	-		-	2	1		1	1	-	1	-
Overall	СО	-	- 1	-	-	-	-	-	2	1	1	1	1	-	1	-

^{1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OPE351 INTRODUCTION TO PETROLEUM REFINING AND PETROCHEMICALS

LTPC 3003

OBJECTIVE:

The course is aimed to

Gain knowledge about petroleum refining process and production of petrochemical products.

UNIT I ORIGIN, FORMATION AND REFINING OF CRUDE OIL

9

Origin, Formation and Evaluation of Crude Oil. Testing of Petroleum Products. Refining of Petroleum - Atmospheric and Vacuum Distillation.

UNIT II CRACKING

9

Cracking, Thermal Cracking, Vis-breaking, Catalytic Cracking (FCC), Hydro Cracking, Coking and Air Blowing of Bitumen

UNIT III REFORMING AND HYDROTREATING

9

Catalytic Reforming of Petroleum Feed Stocks. Lube oil processing- Solvent Treatment Processes, Dewaxing, Clay Treatment and Hydrofining. Treatment Techniques: Removal of Sulphur Compounds in all Petroleum Fractions to improve performance.

UNIT IV INTRODUCTION TO PETROCHEMICALS

9

Petrochemicals - Cracking of Naphtha and Feed stock gas for the production of Ethylene, Propylene, Isobutylene and Butadiene. Production of Acetylene from Methane, and Extraction of Aromatics.

UNIT V PRODUCTION OF PETROCHEMICALS

9

Production of Petrochemicals like Dimethyl Terephathalate(DMT), Ethylene Glycol, Synthetic glycerine, Linear Alkyl Benzene (LAB), Acrylonitrile, Methyl Methacrylate (MMA), Vinyl Acetate Monomer, Phthalic Anhydride, Maleic Anhydride, Phenol, Acetone, Methanol, Formaldehyde, Acetaldehyde, Pentaerythritol and production of Carbon Black.

TOTAL: 45 PERIODS

OUTCOMES:

On the completion of the course students are expected to

CO1: Understand the classification, composition and testing methods of crude petroleum and its products. Learn the mechanism of refining process.

CO2: Understand the insights of primary treatment processes to produce the precursors.

CO3: Study the secondary treatment processes cracking, vis-breaking and coking to produce more petroleum products.

CO4: Appreciate the need of treatment techniques for the removal of sulphur and other impurities from petroleum products.

CO5: Understand the societal impact of petrochemicals and learn their manufacturing processes.

CO6: Learn the importance of optimization of process parameters for the high yield of petroleum products.

TEXT BOOKS

- 1. Nelson, W. L., "Petroleum Refinery Engineering", 4th Edition., McGraw Hill, New York, 1985.
- 2. Wiseman. P., "Petrochemicals", UMIST Series in Science and Technology, John Wiley & Sons,1986.

REFERENCES

- 1. Bhaskara Rao, B. K., "Modern Petroleum Refining Processes", 2nd Edition, Oxford and IBH Publishing Company, New Delhi, 1990.
- 2. Bhaskara Rao, B. K. "A Text on Petrochemicals", 1st Edition, Khanna Publishers

CPE334

ENERGY CONSERVATION AND MANAGEMENT

L T P C 3 0 0 3

OBJECTIVES:

At the end of the course, the student is expected to

- understand and analyse the energy data of industries
- carryout energy accounting and balancing
- conduct energy audit and suggest methodologies for energy savings and
- utilise the available resources in optimal ways

UNIT I INTRODUCTION

Ś

Energy - Power - Past & Present scenario of World; National Energy consumption Data - Environmental aspects associated with energy utilization - Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing.

UNIT II ELECTRICAL SYSTEMS

9

Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.

UNIT III THERMAL SYSTEMS

9

Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &U sage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories

UNIT IV ENERGY CONSERVATION IN MAJOR UTILITIES

9

Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems –Cooling Towers – D.G. sets

UNIT V ECONOMICS

0

Energy Economics - Discount Rate, Payback Period, Internal Rate of Return, Net Present

OUTCOMES:

Upon completion of this course, the students can able to analyze the energy data of industries.

- CO1: Remember the knowledge for Basic combustion and furnace design and selection of thermal and mechanical energy equipment.
- CO2: Study the Importance of Stoichiometry relations, Theoretical air required for complete combustion.
- CO3: Skills on combustion thermodynamics and kinetics.
- CO4: Apply calculation and design tube still heaters.
- CO5: Studied different heat treatment furnace.
- CO6: Practical and theoretical knowledge burner design.

TEXT BOOKS:

1. Energy Manager Training Manual (4 Volumes) available at www.energymanagertraining.com. a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India, 2004.

REFERENCES:

- 1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management and Utilisation" Hemisphere Publ, Washington, 1988.
- 2. Callaghn, P.W. "Design and Management for Energy Conservation", Pergamon Press, Oxford, 1981.
- 3. Dryden, I.G.C., "The Efficient Use of Energy" Butterworths, London, 1982
- 4. Turner. W.C., "Energy Management Hand book", Wiley, New York, 1982.
- 5. Murphy. W.R. and G. Mc KAY, "Energy Management", Butterworths, London 1987

OPT351

BASICS OF PLASTICS PROCESSING

LTPC 3003

TOTAL: 45 PERIODS

COURSE OBJECTIVES

- Understand the fundamentals of plastics processing, such as the relationships between material structural properties and required processing parameters, and so on
- To gain practical knowledge on the polymer selection and its processing
- Understanding the major plastic material processing techniques (Extrusion, Injection molding, Compression and Transfer molding, Blow molding, Thermoforming and casting)
- To understand suitable additives for plastics compounding
- To Propose troubleshooting mechanisms for defects found in plastics products manufactured by various processing techniques

UNIT I INTRODUCTION TO PLASTICS PROCESSING

9

Introduction to plastic processing – Principles of plastic processing: processing of plastics vs. metals and ceramics. Factors influencing the efficiency of plastics processing: molecular weight, viscosity and rheology. Difference in approach for thermoplastic and thermoset processing. Additives for plastics compounding and processing: antioxidants, light stabilizers, UV stabilizers, lubricants, impact modifiers, flame retardants, antistatic agents, stabilizers and plasticizers. Compounding: plastic compounding techniques, plasticization, pelletization.

UNIT II EXTRUSION

9

Extrusion – Principles of extrusion. Features of extruder: barrel, screw, types of screws, drive mechanism, specifications, heating & cooling systems, types of extruders. Flow mechanism: process variables, die entry effects and exit instabilities. Die swell, Defects: melt fracture, shark skin, bambooing. Factors determining efficiency of an extruder. Extrusion of films: blown and cast films. Tube/pipe extrusion. Extrusion coating: wire & cable. Twin screw extruder and its applications. Applications of extrusion and new developments.

INJECTION MOLDING UNIT III

Injection molding - Principles and processing outline, machinery, accessories and functions, specifications, process variables, mould cycle. Types of clamping: hydraulic and toggle mechanisms. Start-up and shut down procedures-Cylinder nozzles- Press capacity projected area -Shot weight Basic theoretical concepts and their relationship to processing - Interaction of moulding process aspect effects in quoted variables. Basic mould types. Reciprocating vs. plunger type injection moulding. Thermoplastic vs. thermosetting injection moulding. Injection moulding vs. other plastic processing techniques. State-of-the art injection moulding techniques - Introduction to trouble shooting

UNIT IV COMPRESSION AND TRANSFER MOLDING

9

Compression moulding - Basic principles of compression and transfer moulding-Meaning of terms-Bulk factor and flow properties, moulding materials, process variables and process cycle, Inter relation between flow properties-Curing time-Mould temperature and Pressure requirements. Preforms and preheating- Techniques of preheating. Machines used-Types of compression mould- positive, semi-positive and flash. Common moulding faults and their correction- Finishing of mouldings. Transfer moulding: working principle, equipment, Press capacity-Integral moulds and auxiliary ram moulds, moulding cycle, moulding tolerances, pot transfer, plunger transfer and screw transfer moulding techniques, advantages over compression moulding

UNIT V BLOW MOLDING, THERMOFORMING AND CASTING

9

Blow moulding: principles and terminologies. Injection blow moulding. Extrusion blow moulding. Design guidelines for optimum product performance and appearance. Thermoforming: principle, vacuum forming, pressure forming mechanical forming. Casting: working principle, types and applications.

TOTAL HOURS: 45

COURSE OUTCOMES

- Ability to find out the correlation between various processing techniques with product properties.
- Understand the major plastics processing techniques used in moulding (injection, blow, compression, and transfer), extrusion, thermoforming, and casting.
- Acquire knowledge on additives for plastic compounding and methods employed for the same
- Familiarize with the machinery and ancillary equipment associated with various plastic processing techniques.
- Select an appropriate processing technique for the production of a plastic product

REFERENCES

- 1. S. S. Schwart, S. H. Goodman, Plastics Materials and Processes, Van Nostrad Reinhold Company Inc. (1982).
- 2. F. Hensen (Ed.), Plastic Extrusion Technology, Hanser Gardner (1997).
- 3. W. S. Allen and P. N. Baker, Hand Book of Plastic Technology, Volume-1, Plastic Processing Operations [Injection, Compression, Transfer, Blow Molding], CBS Publishers and Distributors (2004).
- 4. M. Chanda, S. K. Roy, Plastic Technology handbook, 4th Edn., CRC Press (2007).
- 5. I. I. Rubin, Injection Molding Theory & Practice, Society of Plastic Engineers, Wiley (1973).
- D.V. Rosato, M. G. Rosato, Injection Molding Hand Book, Springer (2012).
- 7. M. L. Berins (Ed.), SPI Plastic Engineering Hand Book of Society of Plastic Industry Inc., Springer (2012).
- 8. B. Strong, Plastics: Material & Processing, A, Pearson Prentice hall (2005).
- 9. D.V Rosato, Blow Molding Hand Book, Carl HanserVerlag GmbH & Co (2003).

COURSE OBJECTIVES:

- To understand the basic properties of signal & systems
- To know the methods of characterization of LTI systems in time domain
- To analyze continuous time signals and system in the Fourier and Laplace domain
- To analyze discrete time signals and system in the Fourier and Z transform domain

UNIT I CLASSIFICATION OF SIGNALS AND SYSTEMS

C

Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids_Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant& Time-invariant, Causal & Non-causal, Stable & Unstable.

UNIT II ANALYSIS OF CONTINUOUS TIME SIGNALS

9

Fourier series for periodic signals - Fourier Transform - properties- Laplace Transforms and Properties

UNIT III LINEAR TIME INVARIANT CONTINUOUS TIME SYSTEMS

9

Impulse response - convolution integrals- Differential Equation- Fourier and Laplace transforms in Analysis of CT systems - Systems connected in series / parallel.

UNIT IV ANALYSIS OF DISCRETE TIME SIGNALS

9

Baseband signal Sampling–Fourier Transform of discrete time signals (DTFT)– Properties of DTFT - Z Transform & Properties

UNIT V LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

TOTAL: 45 PERIODS

Impulse response–Difference equations-Convolution sum- Discrete Fourier Transform and Z Transform Analysis of Recursive & Non-Recursive systems-DT systems connected in series and parallel.

COURSE OUTCOMES:

At the end of the course, the student will be able to:

CO1:determine if a given system is linear/causal/stable

CO2: determine the frequency components present in a deterministic signal

CO3:characterize continuous LTI systems in the time domain and frequency domain

CO4:characterize discrete LTI systems in the time domain and frequency domain

CO5:compute the output of an LTI system in the time and frequency domains

TEXT BOOKS:

- 1. Oppenheim, Willsky and Hamid, "Signals and Systems", 2nd Edition, Pearson Education, New Delhi, 2015.(Units I V)
- 2. Simon Haykin, Barry Van Veen, "Signals and Systems", 2nd Edition, Wiley, 2002

REFERENCES:

- 1. B. P. Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford, 2009.
- 2. M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB", McGraw- Hill Education, 2018.
- 3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007.

С	РО	PO1	PO1	PO1	PSO	PSO	PSO								
1	3	-	3	-	3	2	-	-	-	-	_	3	-	-	1
2	3	-	3	1	1	2	ı	-	-	-		3	1	3	-
3	3	3	-	ı	3	2	ı	-	-	-		3	2	-	-
4	3	3	-	1	3	2	1	-	-	-		3	ı	3	1
5	3	3	-	3	3	2	ı	-	-	-		3	ı	3	1
С	3	3	3	3	3	2	ı	-	-	-	•	3	2	3	1

OEC352 FUNDAMENTALS OF ELECTRONIC DEVICES AND CIRCUITS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- To give a comprehensive exposure to all types of devices and circuits constructed with discrete components. This helps to develop a strong basis for building linear and digital integrated circuits
- To analyze the frequency response of small signal amplifiers
- To design and analyze single stage and multistage amplifier circuits
- To study about feedback amplifiers and oscillators principles
- To understand the analysis and design of multi vibrators

UNIT I SEMICONDUCTOR DEVICES

q

PN junction diode, Zener diode, BJT, MOSFET, UJT -structure, operation and V-I characteristics, Rectifiers - Half Wave and Full Wave Rectifier, Zener as regulator

UNIT II AMPLIFIERS

9

Load line, operating point, biasing methods for BJT and MOSFET, BJT small signal model – Analysis of CE, CB, CC amplifiers- Gain and frequency response –Analysis of CS and Source follower – Gain and frequency response- High frequency analysis.

UNIT III MULTISTAGE AMPLIFIERS AND DIFFERENTIAL AMPLIFIER

ć

Cascode amplifier, Differential amplifier – Common mode and Difference mode analysis – Tuned amplifiers – Gain and frequency response – Neutralization methods.

UNIT IV FEEDBACK AMPLIFIERS AND OSCILLATORS

a

Advantages of negative feedback – Analysis of Voltage / Current, Series , Shunt feedback Amplifiers – positive feedback–Condition for oscillations, phase shift – Wien bridge, Hartley, Colpitts and Crystal oscillators.

UNIT V POWER AMPLIFIERS AND DC/DC CONVERTERS

9

TOTAL: 45 PERIODS

Power amplifiers- class A-Class B-Class AB-Class C-Temperature Effect- Class AB Power amplifier using MOSFET -DC/DC convertors - Buck, Boost, Buck-Boost analysis and design.

COURSE OUTCOMES:

At the end of the course the students will be able to

CO1: Explain the structure and working operation of basic electronic devices.

CO2: Design and analyze amplifiers.

CO3: Analyze frequency response of BJT and MOSFET amplifiers

CO4: Design and analyze feedback amplifiers and oscillator principles.

CO5: Design and analyze power amplifiers and supply circuits

TEXT BOOKS:

- **1.** David A. Bell, "Electronic Devices and Circuits", Oxford Higher Education press, 5 th Edition, 2010.
- 2. Robert L. Boylestad and Louis Nasheresky, "Electronic Devices and Circuit Theory", 10th Edition, Pearson Education / PHI, 2008.
- **3.** Adel .S. Sedra, Kenneth C. Smith, "Micro Electronic Circuits", Oxford University Press, 7 th Edition, 2014.

REFERENCES:

- 1. Donald.A. Neamen, "Electronic Circuit Analysis and Design", Tata McGraw Hill, 3 rd Edition, 2010.
- 2. D.Schilling and C.Belove, "Electronic Circuits", McGraw Hill, 3 rd Edition, 1989
- 3. Muhammad H.Rashid, "Power Electronics", Pearson Education / PHI, 2004.

СО	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PO1 1	PO1 2	PS O1	PS O2	PSO 3
1	3	3	3	3	2	1	-	-	-	-	-	1	2	1	1
2	3	2	2	3	2	2	-	-	-	-	-	1	2	1	1
3	3	3	3	2	1	2	-	-	-	-	-	1	2	1	1
4	3	3	2	3	2	2	-	-	-	-	-	1	2	1	1
5	3	2	3	2	2	1	-	-	-	-	-	1	2	1	1
CO	3	3	3	3	2	2	-	-	-	-	-	1	2	1	1

CBM348 FOUNDATION SKILLS IN INTEGRATED PRODUCT DEVELOPMENT LTPC 3 0 0 3

OBJECTIVES:

- To understand the global trends and development methodologies of various types of products and services
- To conceptualize, prototype and develop product management plan for a new product based on the type of the new product and development methodology integrating the hardware, software, controls, electronics and mechanical systems
- To understand requirement engineering and know how to collect, analyze and arrive at requirements for new product development and convert them in to design specification
- To understand system modeling for system, sub-system and their interfaces and arrive at the optimum system specification and characteristics
- To develop documentation, test specifications and coordinate with various teams to validate and sustain up to the EoL (End of Life) support activities for engineering customer

UNIT I BASICS OF PRODUCT DEVELOPMENT

9

Global Trends Analysis and Product decision - Social Trends - Technical Trends- Economical Trends - Environmental Trends - Political/Policy Trends - Introduction to Product Development Methodologies and Management - Overview of Products and Services - Types of Product Development - Overview of Product Development methodologies - Product Life Cycle - Product Development Planning and Management.

UNIT II REQUIREMENTS AND SYSTEM DESIGN

9

Requirement Engineering - Types of Requirements - Requirement Engineering - traceability Matrix and Analysis - Requirement Management - System Design & Modeling - Introduction to System Modeling - System Optimization - System Specification - Sub-System Design - Interface Design.

UNIT III DESIGN AND TESTING

o

Conceptualization - Industrial Design and User Interface Design - Introduction to Concept generation Techniques - Challenges in Integration of Engineering Disciplines - Concept Screening & Evaluation - Detailed Design - Component Design and Verification - Mechanical, Electronics and Software Subsystems - High Level Design/Low Level Design of S/W Program - Types of Prototypes, S/W Testing- Hardware Schematic, Component design, Layout and Hardware Testing - Prototyping - Introduction to Rapid Prototyping and Rapid Manufacturing - System Integration, Testing, Certification and Documentation

UNIT IV SUSTENANCE ENGINEERING AND END-OF-LIFE (EOL) SUPPORT 9 Introduction to Product verification processes and stages - Introduction to Product Validation processes and stages - Product Testing Standards and Certification - Product Documentation - Sustenance - Maintenance and Repair — Enhancements - Product EoL - Obsolescence Management — Configuration Management - EoL Disposal

UNIT V BUSINESS DYNAMICS – ENGINEERING SERVICES INDUSTRY

9

The Industry - Engineering Services Industry - Product Development in Industry versus Academia -The IPD Essentials - Introduction to Vertical Specific Product Development processes -Manufacturing/Purchase and Assembly of Systems - Integration of Mechanical,

Embedded and Software Systems – Product Development Trade-offs - Intellectual Property Rights and Confidentiality – Security and Configuration Management.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to:

- Define, formulate, and analyze a problem
- Solve specific problems independently or as part of a team
- Gain knowledge of the Innovation & Product Development process in the Business Context
- · Work independently as well as in teams
- Manage a project from start to finish

TEXT BOOKS:

- 1. Book specially prepared by NASSCOM as per the MoU.
- 2. Karl T Ulrich and Stephen D Eppinger, "Product Design and Development", Tata McGraw Hill, Fifth Edition, 2011.
- 3. John W Newstorm and Keith Davis, "Organizational Behavior", Tata McGraw Hill, Eleventh Edition, 2005.

REFERENCES:

- 1. Hiriyappa B, "Corporate Strategy Managing the Business", Author House, 2013.
- 2. Peter F Drucker, "People and Performance", Butterworth Heinemann [Elsevier], Oxford, 2004.
- 3. Vinod Kumar Garg and Venkita Krishnan N K, "Enterprise Resource Planning Concepts", Second Edition, Prentice Hall, 2003.
- 4. Mark S Sanders and Ernest J McCormick, "Human Factors in Engineering and Design", McGraw Hill Education, Seventh Edition, 2013

CO's- PO's & PSO's MAPPING

CO's	PO's												PSO's	S	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	3	1						1		1			
2	3	2	3	1						1		1			
3	3	2	3	1	1			1	1	1		1			
4	3	2	3	1	1			1	1	1		1			
5	3	2	3	1	1			1	1	1		1			
AVg.										7/7					

CBM333

ASSISTIVE TECHNOLOG

LTPC 3003

OBJECTIVES:

The student should be made to:

- To know the hardware requirement various assistive devices
- To understand the prosthetic and orthotic devices
- To know the developments in assistive technology

UNIT I CARDIAC ASSIST DEVICES

9

Cardiac functions and parameters, principle of External counter pulsation techniques, intra aortic balloon pump, Auxillary ventricle and schematic for temporary bypass of left ventricle, prosthetic heart valves, cardiac pacemaker.

UNIT II HEMODIALYSERS

Physiology of kidney, Artificial kidney, Dialysis action, hemodialyser unit, membrane dialysis, portable dialyser monitoring and functional parameters.

UNIT III HEARING AIDS

9

Anatomy of ear, Common tests – audiograms, air conduction, bone conduction, masking techniques, SISI, Hearing aids – principles, drawbacks in the conventional unit, DSP based hearing aids.

UNIT IV PROSTHETIC AND ORTHODIC DEVICES

9

Hand and arm replacement – different types of models, externally powered limb prosthesis, feedback in orthotic system, functional electrical stimulation, sensory assist devices.

UNIT V RECENT TRENDS

9

Transcutaneous electrical nerve stimulator, bio-feedback, assistive devices in drug delivery

OUTCOMES:

On successful completion of this course, the student will be able to

CO1: Interpret the various mechanical techniques that will help in assisting the heart functions.

CO2: Describe the underlying principles of hemodialyzer machine.

CO3: Indicate the methodologies to assess the hearing loss.

CO4: Evaluate the types of assistive devices for mobilization.

CO5: Explain about TENS and biofeedback system.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. Joseph D. Bronzino, The Biomedical Engineering Handbook, Third Edition: Three Volume Set, CRC Press, 2006
- 2. Marion. A. Hersh, Michael A. Johnson, Assistive Technology for visually impaired and blind, Springer Science & Business Media, 1st edition, 12-May-2010
- 3. Yadin David, Wolf W. von Maltzahn, Michael R. Neuman, Joseph.D, Bronzino, Clinical Engineering, CRC Press, 1st edition, 2010.

REFERENCES

- 1. Kenneth J. Turner Advances in Home Care Technologies: Results of the match Project, Springer, 1stedition, 2011.
- 2. Gerr M. Craddock Assistive Technology-Shaping the future, IOS Press, 1st edition, 2003
- 3. 3D Printing in Orthopaedic Surgery, Matthew Dipaola , Elsevier 2019 ISBN 978 -0-323-662116
- 4. Cardiac Assist Devices, Daniel Goldstein (Editor), Mehmet Oz (Editor), Wiley-Blackwell April 2000 ISBN: 978-0-879-93449-1

CO's	PO's												PSO's	S	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	1	1	1	1						7				
2	3	1	1	1	1										
3	3	11	1	1	11										
4	3	1	1	1	1										
5	3	1	1	1	1							41			
AVg.															

OMA352

OPERATIONS RESEARCH

L T P C 3 0 0 3

OBJECTIVES:

This course will help the students to

- determine the optimum solution for Linear programming problems.
- study the Transportation and assignment models and various techniques to solve them.
- acquire the knowledge of optimality, formulation and computation of integer programming problems.
- acquire the knowledge of optimality, formulation and computation of dynamic programming problems.
- determine the optimum solution for non-linear programming problems.

UNIT I LINEAR PROGRAMMING

9

Formulation of linear programming models – Graphical solution – Simplex method - Big M Method – Two phase simplex method - Duality - Dual simplex method.

UNIT II TRANSPORTATION AND ASSIGNMENT PROBLEMS

9

Matrix form of Transportation problems – Loops in T.P – Initial basic feasible solution – Transportation algorithm – Assignment problem – Unbalanced assignment problems .

UNIT III INTEGER PROGRAMMING

Ç

Introduction – All and mixed I.P.P – Gomory's method – Cutting plane algorithm – Branch and bound algorithm – Zero – one programming.

UNIT IV DYNAMIC PROGRAMMING PROBLEMS

Q

Recursive nature of computation – Forward and backward recursion – Resource Allocation model – Cargo – loading model – Work – force size model - Investment model – Solution of L.P.P by dynamic programming.

UNIT V NON - LINEAR PROGRAMMING PROBLEMS

9

Lagrange multipliers – Equality constraints – Inequality constraints – Kuhn – Tucker Conditions – Quadratic programming.

TOTAL:45 PERIODS

OUTCOMES:

At the end of the course, students will be able to

- Could develop a fundamental understanding of linear programming models, able to develop a linear programming model from problem description, apply the simplex method for solving linear programming problems.
- analyze the concept of developing, formulating, modeling and solving transportation and assignment problems.
- solve the integer programming problems using various methods.
- conceptualize the principle of optimality and sub-optimization, formulation and computational procedure of dynamic programming.
- determine the optimum solution for nonlinear programming problems.

TEXT BOOKS:

- 1. Kanti Swarup, P.K.Gupta and Man Mohan, "Operations Research", Sultan Chand & Sons, New Delhi, Fifth Edition, 1990.
- 2. Taha. H.A, "Operations Research An Introduction, Pearson Education, Ninth Edition, New Delhi, 2012.

REFERENCES:

- 1. J.K.Sharma, "Operations Research Theory and Applications "Mac Millan India Ltd, Second Edition, New Delhi, 2003.
- 2. Richard Bronson & Govindasami Naadimuthu, "Operations Research" (Schaum's Outlines TMH Edition) Tata McGraw Hill, Second Edition, New Delhi, 2004.
- 3. Pradeep Prabhakar Pai, "Operations Research and Practice", Oxford University Press, New Delhi, 2012.
- 4. J.P.Singh and N.P.Singh, "Operations Research, Ane Books Pvt.L.td, New Delhi, 2014
- 5. F.S.Hillier and G.J. Lieberman, "Introduction to Operations Research", Tata McGraw Hill, Eighth Edition, New Delhi, 2005.

			<u> </u>												
	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PO	PS	PS	PS
	01	02	03	04	05	06	07	80	09	10	11	12	01	02	O3
CO1	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO2	3	3	3	2	0	0	0	0	2	0	0	2	-	-	-
CO3	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO4	3	3	0	0	0	0	0	0	2	0	0	2	-	-	-
CO5	3	3	2	2	0	0	0	0	2	0	0	2	-	-	-
Avg	3	3	1	8.0	0	0	0	0	2	0	0	2	-	-	-

OBJECTIVES:

To introduce the basic notions of groups, rings, fields which will then be used to solve related problems.

- To examine the key questions in the Theory of Numbers.
- To give an integrated approach to number theory and abstract algebra, and provide a firm basis for further reading and study in the subject.

UNIT I GROUPS AND RINGS

C

Groups: Definition - Properties - Homomorphism - Isomorphism - Cyclic groups - Cosets - Lagrange's theorem.

Rings: Definition - Sub rings - Integral domain - Field - Integer modulo n - Ring homomorphism.

UNIT II FINITE FIELDS AND POLYNOMIALS

9

Rings - Polynomial rings - Irreducible polynomials over finite fields - Factorization of polynomials over finite fields.

UNIT III DIVISIBILITY THEORY AND CANONICAL DECOMPOSITIONS

a

Division algorithm- Base-b representations – Number patterns – Prime and composite numbers – GCD – Euclidean algorithm – Fundamental theorem of arithmetic – LCM.

UNIT IV DIOPHANTINE EQUATIONS AND CONGRUENCES

a

Linear Diophantine equations – Congruence's – Linear Congruence's - Applications : Divisibility tests - Modular exponentiation - Chinese remainder theorem – 2x2 linear systems.

UNIT V CLASSICAL THEOREMS AND MULTIPLICATIVE FUNCTIONS 9 Wilson's theorem – Fermat's Little theorem – Euler's theorem – Euler's Phi functions – Tau and Sigma functions.

TOTAL: 45 PERIODS

OUTCOMES:

- Explain the fundamental concepts of advanced algebra and their role in modern mathematics and applied contexts.
- Demonstrate accurate and efficient use of advanced algebraic techniques.
- The students should be able to demonstrate their mastery by solving non-trivial problems related to the concepts, and by proving simple theorems about the, statements proven by the text

TEXT BOOKS:

- 1. Grimaldi, R.P and Ramana, B.V., "Discrete and Combinatorial Mathematics", Pearson Education, 5th Edition, New Delhi, 2007.
- 2. Thomas Koshy, "Elementary Number Theory with Applications", Elsevier Publications, New Delhi, 2002.

REFERENCES:

- 1. San Ling and Chaoping Xing, "Coding Theory A first Course", Cambridge Publications, Cambridge, 2004.
- 2. Niven.I, Zuckerman.H.S., and Montgomery, H.L., "An Introduction to Theory of Numbers", John Wiley and Sons, Singapore, 2004.
- Lidl.R., and Pitz. G, "Applied Abstract Algebra", Springer Verlag, New Delhi, 2nd Edition, 2006.

	PO	PS	PS	PS											
	01	02	03	04	05	06	07	80	09	10	11	12	01	02	О3
CO1	3	1	2	-	-	-	2	1	-	1	2	2	-	-	-
CO2	3	3	1	1	3	1	2	1	1	1	2	2	-	-	-
CO3	3	3	2	1	3	1	3	1	1	1	2	3	-	-	-

CO4	3	3	2	2	3	2	2	1	1	1	2	3	-	-	-
CO5	2	2	1	-	3	1	2	1	1	1	3	3	-	-	-
Avg	2.8	2.4	1.6	8.0	2.4	1	2.2	1	8.0	1	2.2	2.6	-	-	-

OMA354 LINEAR ALGEBRA

COURSE OBJECTIVES:

- To test the consistency and solve system of linear equations.
- To find the basis and dimension of vector space.
- To obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
- To find orthonormal basis of inner product space and find least square approximation.
- To find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

UNIT I MATRICES AND SYSTEM OF LINEAR EQUATIONS

Matrices - Row echelon form - Rank - System of linear equations - Consistency - Gauss elimination method - Gauss Jordan method.

UNIT II VECTOR SPACES

9

LTPC 3003

Vector spaces over Real and Complex fields - Subspace - Linear space - Linear independence and dependence - Basis and dimension.

UNIT III LINEAR TRANSFORMATION

9

Linear transformation - Rank space and null space - Rank and nullity - Dimension theorem—Matrix representation of linear transformation - Eigenvalues and eigenvectors of linear transformation - Diagonalization.

UNIT IV INNER PRODUCT SPACES

9

9

Inner product and norms - Properties - Orthogonal, Orthonormal vectors - Gram Schmidt orthonormalization process - Least square approximation.

UNIT V EIGEN VALUE PROBLEMS AND MATRIX DECOMPOSITION

Eigen value Problems : Power method, Jacobi rotation method - Singular value decomposition - QR decomposition.

TOTAL : 45 PERIODS

COURSE OUTCOMES:

After the completion of the course the student will be able to

- 1. Test the consistency and solve system of linear equations.
- 2. Find the basis and dimension of vector space.
- 3. Obtain the matrix of linear transformation and its eigenvalues and eigenvectors.
- 4. Find orthonormal basis of inner product space and find least square approximation.
- 5. Find eigenvalues of a matrix using numerical techniques and perform matrix decomposition.

TEXT BOOKS

- 1. Faires J.D. and Burden R., Numerical Methods, Brooks/Cole (Thomson Publications), New Delhi, 2002.
- 2. Friedberg A.H, Insel A.J. and Spence L, Linear Algebra, Pearson Education, 5th Edition, 2019.

REFERENCES

- 1. Bernard Kolman, David R. Hill, Introductory Linear Algebra, Pearson Educations, New Delhi, 8th Edition, 2009.
- 2. Gerald C.F. and Wheatley P.O, Applied Numerical Analysis, Pearson Educations, New Delhi, 7th Edition, 2007.
- 3. Kumaresan S, Linear Algebra A geometric approach, Prentice Hall of India, New Delhi, Reprint, 2010.
- 4. Richard Branson, Matrix Operations, Schaum's outline series, 1989.
- 5. Strang G, Linear Algebra and its applications, Thomson (Brooks / Cole) New Delhi,

- 4th Edition, 2005.
- 6. Sundarapandian V, Numerical Linear Algebra, Prentice Hall of India, New Delhi, 2014.

	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
	01	02	03	04	05	06	07	80	09	10	11	12	01	02	O 3
CO1	3	3	3	3	2	2	2	1	1	1	1	3	-	-	-
CO2	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO3	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO4	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO5	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
Avg	3	3	3	3	2.8	2	2	1	1	1	1	3	-	-	-

OBT352

BASICS OF MICROBIAL TECHNOLOGY

LTPC 3003

COURSE OBJECTIVE:

• Enable the Non-biological student's to understand about the basics of life science and their pro and cons for living organisms.

UNIT I BASICS OF MICROBES AND ITS TYPES

9

Introduction to microbes, existence of microbes, inventions of great scientist and history, types of microorganisms – Bacteria, Virus, Fungi.

UNIT II MICROBIAL TECHNIQUES

9

Sterilization – types – physical and chemical sterilization, Decontamination, Preservation methods, fermentation, Cultivation and growth of microbes, Diagnostic methods.

UNIT III PATHOGENIC MICROBES

a

Infectious Disease – Awareness, Causative agent, Prevention and control - Cholera, Dengu, Malaria, Diarrhea, Tuberculosis, Typhoid, Covid, HIV.

UNIT IV BENEFICIAL MICROBES

9

Applications of microbes – Clinical microbiology, agricultural microbiology, Food Microbiology, Environmental Microbiology, Animal Microbiology, Marine Microbiology.

UNIT V PRODUCTS FROM MICROBES

9

Fermentedproducts – Fermented Beverages, Curd, Cheese, Mushroom, Agricultural products – Biopesticide, Biofertilizers, Vermi compost, Pharmaceutical products - Antibiotics, Vaccines

TOTAL: 45 PERIODS

COURSE OUTCOME:

At the end of the course the students will be able to

- Microbes and their types
- 2. Cultivation of microbes
- 3. Pathogens and control measures for safety
- 4. Microbes in different industry for economy.

TEXT BOOKS

- **1.** Talaron K, Talaron A, Casita, Pelczar and Reid. Foundations in Microbiology, W.C. Brown Publishers, 1993.
- 2. Pelczar MJ, Chan ECS and Krein NR, Microbiology, Tata McGraw Hill Edition, New Delhi, India.
- **3.** Prescott L.M., Harley J.P., Klein DA, Microbiology, 3rd Edition, Wm. C. Brown Publishers, 1996.

OBJECTIVES:

 The objective is to offer basic concepts of biochemistry to students with diverse background in life sciences including but not limited to the structure and function of various biomolecules and their metabolism.

UNIT I CARBOHYDRATES

9

Introduction to carbohydrate, classification, properties of monosaccharide, structural aspects of monosaccharides. Introduction to disaccharide (lactose, maltose, sucrose) and polysaccharide (Heparin, starch, and glycogen) biological function of carbohydrate.

UNIT II LIPID AND FATTY ACIDS

9

Introduction to lipid, occurrence, properties, classification of lipid. Importance of phospholipids, sphingolipid and glycerolipid. Biological function of lipid. Fatty acid, Introduction, Nomenclature and classification of fatty acid Essential and non essential fatty acids.

UNIT III AMINO ACIDS AND PROTEIN.

9

Introduction to amino acid, structure, classification of protein based on polarity. Introduction to protein, classification of protein based on solubility, shape, composition and Function. Peptide bond—Structure of peptide bond. Denauration—renaturation of protein, properties of protein. Introduction to lipoprotein, glycoprotein and nucleoprotein. Biological function of protein.

UNIT IV NUCLEIC ACIDS

9

Introduction to nucleic acid, Difference between nucleotide and nucleoside, composition of DNA & amp; RNA Structure of Nitrogen bases in DNA and RNA along with the nomenclature DNA double helix (Watson and crick) model, types of DNA, RNA.

UNIT V VITAMINS AND HORMONES

9

Different types of vitamins, their diverse biochemical functions and deficiency related diseases. Overview of hormones. Hormone mediated signaling. Mechanism of action of steroid hormones, epinephrine, glucagons and insulin.Role of vitamins and hormones in metabolism; Hormonal disorders; Therapeutic uses of vitamins and hormones.

OUTCOMES:

☐ Students will learn about various kinds of biomolecules and their physiological role.

☐ Students will gain knowledge about various metabolic disorders and will help them to know the importance of various biomolecules in terms of disease correlation.

TOTAL: 45 PERIODS

TEXT BOOKS

- Lehninger Principles of Biochemistry 6th Edition by David L. Nelson, Michael M. Cox W.H.Freeman and Company 2017
- 2. Satyanarayana, U. and U. Chakerapani, "Biochemistry" 3rd Rev. Edition, Books & Samp; Allied (P) Ltd., 2006. 3. Rastogi, S.C. "Biochemistry" 2nd Edition, Tata McGraw-Hill, 2003.
- 4. Conn, E.E., etal., "Outlines of Biochemistry" 5th Edition, John Wiley & Sons, 1987.
- 5. Outlines of Biochemistry, 5th Edition: By E E Conn, P K Stumpf, G Bruening and R Y Doi.pp 693. John Wiley and Sons, New York. 1987.

REFERENCES

- 1. Berg, Jeremy M. et al. "Biochemsitry", 6th Edition, W.H. Freeman & Edition, W.H. Freeman & Edition, 2006.
- 2. Murray, R.K., etal "Harper's Illustrated Biochemistry", 31st Edition, McGraw-Hill, 2018.
- 3. Voet, D. and Voet, J.G., "Biochemistry", 4th Edition, John Wiley & Drs., 2010.

OBJECTIVES:

□ To provide knowledge on the fundamentals of cell biology.
□ To understand the signalling mechanisms.
□ Understand basic principles of molecular biology at intracellular level to regulate growth,
division and development.

UNIT-I INTRODUCTION TO CELL

a

Cell, cell wall and Extracellular Matrix (ECM), composition, cellular dimensions, Evolution, Organisation, differentiation of prokaryotic and Eukaryotic cells, Virus, bacteria, cyanobacteria, mycoplasma and prions.

UNIT II CELL ORGANELLES

a

Molecular organisation, biogenesis and functin Mitochondria, endoplasmic reticulam, golgi apparatus, plastids, chloroplast, leucoplast, centrosome, lysosome, ribosome, peroxisome, Nucleus and nucleolus. Endo membrane system, concept of compartmentalisation.

UNIT III BIO-MEMBRANE TRANSPORT

9

Physiochemical properties of cell membranes. Molecular constitute of membranes, asymmetrical organisation of lipids and proteins. Solute transport across membrane's-fick's law, simple diffusion, passive-facilitated diffusion, active transport- primary and secondary, group translocation, transport ATPases, membrane transport in bacteria and animals. Transportmechanism- mobile carriers and pores mechanisms. Transport by vesicle formation, endocytosis, exocytosis, cell respiration.

UNIT IV CELL CYCLE

9

Cell cycle- Cell division by mitosis and meosis, Comparision of meosis and mitosis, regulation of cell cycle, cell lysis, Cytokinesis, Cell signaling, Cell communication, Cell adhesion and Cell junction, cell cycle checkpoints.

UNIT V CENTRAL DOGMA

9

Overview of Central dogma DNA replication: Meselson & DNA repriment, bi—directional DNA replication, Okazaki fragments. Structure and function of mRNA, rRNA and tRNA. RNA synthesis: Initiation, elongation and termination of RNA synthesis Introduction to Genetic code-Steps in translation: Initiation, Elongation and termination of protein synthesis.

TOTAL: 45 PERIODS

OUTCOMES:

Understanding of cell at structural and functional	level.
☐ Understand the central dogma of life and its sign	ificano

☐ Comprehend the basic mechanisms of cell division.

TEXTBOOKS:

- Cooper, G.M. and R.E. Hansman "The Cell: A Molecular Approach", 8th Edition, Oxford University Press, 2018
- 2. Friefelder, David. "Molecular Biology." Narosa Publications, 1999
- 3. Weaver, Robert F. "Molecular Biology" IInd Edition, Tata McGraw-Hill, 2003.

REFERENCES:

- 1. Lodish H, Berk A, MatsudairaP, Kaiser CA, Krieger M, Schot MP, Zipursky L, Darnell J. Molecular Cell Biology, 6th Edition, 2007.
- 2. Becker, W.M. etal., "The World of the Cell", 9th Edition, Pearson Education, 2003.
- 3. Campbell, N.A., J.B. Recee and E.J. Simon "Essential Biology", VIIrd Edition, Pearson International, 2007.
- 4. Alberts, Bruce etal., "Essential Cell Biology", 4th Edition, W.W. Norton, 2013.

OPEN ELECTIVE IV

OHS352

PROJECT REPORT WRITING

L T P C 3 0 0 3

COURSE OBJECTIVE

The Course will enable Learners to,

- Understand the essentials of project writing.
- Perceive the difference between general writing and technical writing
- Assimilate the fundamental features of report writing.
- Understand the essential differences that exist between general and technical writing.
- Learn the structure of a technical and project report.

UNIT I 9

Writing Skills – Essential Grammar and Vocabulary – Passive Voice, Reported Speech, Concord, Signpost words, Cohesive Devices – Paragraph writing - Technical Writing vs. General Writing.

UNIT II 9

Project Report – Definition, Structure, Types of Reports, Purpose – Intended Audience – Plagiarism – Report Writing in STEM fields – Experiment – Statistical Analysis.

UNIT III 9

Structure of the Project Report: (Part 1) Framing a Title – Content – Acknowledgement – Funding Details -Abstract – Introduction – Aim of the Study – Background - Writing the research question - Need of the Study/Project Significance, Relevance – Determining the feasibility – Theoretical Framework.

UNIT IV

Structure of the Project Report: (Part 2) – Literature Review, Research Design, Methods of Data Collection - Tools and Procedures - Data Analysis - Interpretation - Findings – Limitations - Recommendations – Conclusion – Bibliography.

UNIT V

Proof reading a report – Avoiding Typographical Errors – Bibliography in required Format – Font – Spacing – Checking Tables and Illustrations – Presenting a Report Orally – Techniques.

TOTAL:45 PERIODS

OUTCOMES

By the end of the course, learners will be able to

- Write effective project reports.
- Use statistical tools with confidence.
- Explain the purpose and intension of the proposed project coherently and with clarity.
- Create writing texts to suit achieve the intended purpose.
- Master the art of writing winning proposals and projects.

CO-PO & PSO MAPPING

CO	PO												PSC)	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	1	1	1	1	3	2	2	3	3	3	3	-	-	-
2	2	2	2	1	1	1	2	1	2	3	2	3	-	-	-
3	2	2	3	3	2	3	2	2	2	3	2	3	-	-	-
4	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
5	3	3	3	3	3	3	3	3	3	3	3	3	-	-	-
AVg.	2.4	2.2	2.4	2.2	2	2.6	2.4	2.2	2.6	3	2.6	3	-	-	-

- 1-low, 2-medium, 3-high, '-"- no correlation
- Note: The average value of this course to be used for program articulation matrix.

REFERENCES

- 1. Gerson and Gerson Technical Communication: Process and Product, 7th Edition, Prentice Hall(2012)
- 2. Virendra K. Pamecha Guide to Project Reports, Project Appraisals and Project Finance (2012)
- Daniel Riordan Technical Report Writing Today (1998)
 Darla-Jean Weatherford Technical Writing for Engineering Professionals (2016)
 Penwell Publishers.

OCE354 BASICS OF INTEGRATED WATER RESOURCES MANAGEMENT L T P C 3 0 0 3

OBJECTIVES

- To introduce the interdisciplinary approach of water management.
- To develop knowledge base and capacity building on IWRM.

UNIT I OVERVIEW OF IWRM

q

9

Facts about water - Definition - Key challenges - Paradigm shift - Water management Principles - Social equity - Ecological sustainability - Economic efficiency - SDGs - World Water Forums.

UNIT II WATER USE SECTORS: IMPACTS AND SOLUTION

Water users: People, Agriculture, ecosystem and others - Impacts of the water use sectors on water resources - Securing water for people, food production, ecosystems and other uses - IWRM relevance in water resources management.

UNIT III WATER ECONOMICS

9

Economic characteristics of water good and services – Economic instruments – Private sector involvement in water resources management - PPP experiences through case studies.

UNIT IV RECENT TREANDS IN WATER MANAGEMENT

River basin management - Ecosystem Regeneration – 5 Rs - WASH - Sustainable livelihood - Water management in the context of climate change.

UNIT V IMPLEMENTATION OF IWRM

Ś

Barriers to implementing IWRM - Policy and legal framework - Bureaucratic reforms and inclusive development - Institutional Transformation - Capacity building - Case studies on conceptual framework of IWRM.

OUTCOMES

TOTAL: 45 PERIODS

- On completion of the course, the student will be able to apply appropriate management techniques towards managing the water resources.
- **CO1** Describe the context and principles of IWRM; Compare the conventional and integrated ways of water management.
- CO2 Discuss on the different water uses; how it is impacted and ways to tackle these impacts.
- **CO3** Explain the economic aspects of water and choose the best economic option among the alternatives; illustrate the pros and cons of PPP through case studies.
- **CO4** Illustrate the recent trends in water management.
- **CO5** Understand the implementation hitches and the institutional frameworks.

TEXT BOOKS

- 1. Cech Thomas V., Principles of water resources: history, development, management and policy. John Wiley and Sons Inc., New York. 2003.
- 2. Mollinga P. *et al.* " Integrated Water Resources Management", Water in South Asia Volume I, Sage Publications, 2006.

REFERENCES

- 1. Technical Advisory Committee, Background Papers No: 1, 4 and 7, Stockholm, Sweden. 2002.
- 2. IWRM Guidelines at River Basin Level (UNESCO, 2008).
- 3. Tutorial on Basic Principles of Integrated Water Resources Management ,CAP-NET. http://www.pacificwater.org/userfiles/file/IWRM/Toolboxes/introduction%20to%20iwrm/Tuto rial text.pdf
- 4. Pramod R. Bhave, 2011, Water Resources Systems, Narosa Publishers.
- 5. The 17 Goals, United Nations, https://sdgs.un.org/goals.

OMA355

ADVANCED NUMERICAL METHODS

LT P C 3 0 0 3

OBJECTIVE:

• To impart knowledge on numerical methods that will come in handy to solve numerically the problems that arise in engineering and technology. This will also serve as a precursor for future research.

UNIT I ALGEBRAIC EQUATIONS AND EIGENVALUE PROBLEM

9

System of nonlinear equations: Fixed point iteration method - Newton's method; System of linear equations: Thomas algorithm for tri diagonal system - SOR iteration methods; Eigen value problems: Given's method - Householder's method.

UNIT II INTERPOLATION

9

Central difference: Stirling and Bessel's interpolation formulae; Piecewise spline interpolation: Piecewise linear, piecewise quadratic and cubic spline; Least square approximation for continuous data (upto 3rd degree).

UNIT III NUMERICAL METHODS FOR ORDINARY DIFFERENTIAL EQUATIONS

9

Explicit Adams - Bashforth Techniques - Implicit Adams - Moulton Techniques, Predictor - Corrector Techniques - Finite difference methods for solving two - point linear boundary value problems - Orthogonal Collocation method.

UNIT IV FINITE DIFFERENCE METHODS FOR ELLIPTIC EQUATIONS 9

Laplace and Poisson's equations in a rectangular region : Five point finite difference schemes - Leibmann's iterative methods - Dirichlet's and Neumann conditions – Laplace equation in polar coordinates : Finite difference schemes .

UNIT V FINITE DIFFERENCE METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS

Parabolic equations: Explicit and implicit finite difference methods — Weighted average approximation - Dirichlet's and Neumann conditions — First order hyperbolic equations - Method of characteristics - Different explicit and implicit methods; Wave equation: Explicit scheme — Stability of above schemes.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: demonstrate the understandings of common numerical methods for nonlinear equations, system of linear equations and eigenvalue problems;

CO2: understand the interpolation theory;

CO3: understand the concepts of numerical methods for ordinary differential equations;

CO4: demonstrate the understandings of common numerical methods for elliptic equations;

CO5: understand the concepts of numerical methods for time dependent partial differential equations

TEXT BOOKS:

1. Grewal, B.S., "Numerical Methods in Engineering & Science ", Khanna Publications, Delhi, 2013.

- **2.** Gupta, S.K., "Numerical Methods for Engineers", (Third Edition), New Age Publishers, 2015.
- **3.** Jain, M.K., Iyengar, S.R.K. and Jain, R.K., "Computational Methods for Partial Differential Equations", New Age Publishers, 1994.

REFERENCES:

- 1. Saumyen Guha and Rajesh Srivastava, "Numerical methods for Engineering and Science", Oxford Higher Education, New Delhi, 2010.
- 2. Burden, R.L., and Faires, J.D., "Numerical Analysis Theory and Applications", 9 th Edition.
- 3. Cengage Learning, New Delhi, 2016.
- 4. Gupta S.K., "Numerical Methods for Engineers",4th Edition, New Age Publishers, 2019.
- 5. Sastry, S.S., "Introductory Methods of Numerical Analysis", 5th Edition, PHI Learning, 2015.
- 6. Morton, K.W. and Mayers D.F., "Numerical solution of Partial Differential equations",
- 7. Cambridge University press, Cambridge, 2002.

	РО	PS	PS	PS											
	01	02	03	04	05	06	07	08	09	10	11	12	01	O2	O 3
CO1	3	3	3	3	2	2	2	1	1	1	1	3	-	-	-
CO2	3	3	3	3	3	2	2	1	1	1	1	3	N - T	-	-
CO3	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO4	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
CO5	3	3	3	3	3	2	2	1	1	1	1	3	-	-	-
Avg	3	3	3	3	3	2	2	1	1	1	1	3	-	200	-

OMA356

RANDOM PROCESSES

LT P C 3 0 0 3

OBJECTIVES:

- To introduce the basic concepts of probability, one and two dimensional random variables with applications to engineering which can describe real life phenomenon.
- To understand the basic concepts of random processes which are widely used in communication networks.
- To acquaint with specialized random processes which are apt for modelling the real time scenario.
- To understand the concept of correlation and spectral densities.
- To understand the significance of linear systems with random inputs.

UNIT I RANDOM VARIABLES

9

Discrete and continuous random variables – Moments – Moment generating functions – Joint Distribution- Covariance and Correlation – Transformation of a random variable.

UNIT II RANDOM PROCESSES

9

Classification – Characterization – Cross correlation and Cross covariance functions - Stationary Random Processes – Markov process - Markov chain.

UNIT III SPECIAL RANDOM PROCESSES

9

Bernoulli Process - Gaussian Process - Poisson process - Random telegraph process.

UNIT IV CORRELATION AND SPECTRAL DENSITIES

9

Auto correlation functions – Cross correlation functions – Properties – Power spectral density – Cross spectral density – Properties.

UNIT V LINEAR SYSTEMS WITH RANDOM INPUTS

9

Linear time invariant system – System transfer function – Linear systems with random inputs – Auto correlation and cross correlation functions of input and output.

TOTAL: 45 PERIODS

OUTCOMES

Upon successful completion of the course, students should be able to:

- Understand the basic concepts of one and two dimensional random variables and apply in engineering applications.
- Apply the concept random processes in engineering disciplines.
- Understand and apply the concept of correlation and spectral densities.
- Get an exposure of various distribution functions and help in acquiring skills in handling situations involving more than one variable.
- Analyze the response of random inputs to linear time invariant systems.

TEXT BOOKS

- 1. Ibe, O.C.," Fundamentals of Applied Probability and Random Processes ", 1st Indian Reprint, Elsevier, 2007.
- Peebles, P.Z., "Probability, Random Variables and Random Signal Principles ", Tata McGraw Hill, 4th Edition, New Delhi, 2002.

REFERENCES

- 1. Cooper. G.R., McGillem. C.D., "Probabilistic Methods of Signal and System Analysis", Oxford University Press, New Delhi, 3rd Indian Edition, 2012.
- 2. Hwei Hsu, "Schaum's Outline of Theory and Problems of Probability, Random Variables and Random Processes", Tata McGraw Hill Edition, New Delhi, 2004.
- 3. Miller. S.L. and Childers. D.G., "Probability and Random Processes with Applications to Signal Processing and Communications", Academic Press, 2004.
- 4. Stark. H. and Woods. J.W., "Probability and Random Processes with Applications to Signal Processing", Pearson Education, Asia, 3rd Edition, 2002.
- 5. Yates. R.D. and Goodman. D.J., "Probability and Stochastic Processes", Wiley India Pvt. Ltd., Bangalore, 2nd Edition, 2012.

	РО	PO	РО	PS	PS	PS									
	01	02	03	04	05	06	07	08	09	10	11	12	01	O2	О3
CO1	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
CO2	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
CO3	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
CO4	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
CO5	3	3	0	0	0	0	0	0	3	0	0	2	-	-	-
Avg	3	3	0	0	0	0	0	0	3	0	0	2	- 1	-	-

OMA357

QUEUEING AND RELIABILITY MODELLING

LT P C 3 0 0 3

OBJECTIVES:

- To provide necessary basic concepts in probability and random processes for applications such as random signals, linear systems in communication engineering.
- To understand the concept of queueing models and apply in engineering.
- To provide the required mathematical support in real life problems and develop probabilistic models which can be used in several areas of science and engineering.
- To study the system reliability and hazard function for series and parallel systems.
- To implement Markovian Techniques for availability and maintainability which opens up new avenues for research.

UNIT I RANDOM PROCESSES

Classification – Stationary process – Markov process - Poisson process – Discrete parameter Markov chain – Chapman Kolmogorov equations – Limiting distributions.

UNIT II MARKOVIAN QUEUEING MODELS

9

Markovian queues – Birth and death processes – Single and multiple server queueing models – Little's formula - Queues with finite waiting rooms.

UNIT III ADVANCED QUEUEING MODELS

9

M/G/1 queue – Pollaczek Khinchin formula - M/D/1 and M/E $_{\rm K}$ /1 as special cases – Series queues – Open Jackson networks.

UNIT IV SYSTEM RELIABILITY

9

Reliability and hazard functions- Exponential, Normal, Weibull and Gamma failure distribution – Time - dependent hazard models – Reliability of Series and Parallel Systems.

UNIT V MAINTAINABILITY AND AVAILABILITY

9

TOTAL: 45 PERIODS

Maintainability and Availability functions – Frequency of failures – Two Unit parallel system with repair – k out of m systems.

OUTCOMES

Upon successful completion of the course, students should be able to:

- Enable the students to apply the concept of random processes in engineering disciplines.
- Students acquire skills in analyzing various queueing models.
- Students can understand and characterize phenomenon which evolve with respect to time in a probabilistic manner.
- Students can analyze reliability of the systems for various probability distributions.
- Students can be able to formulate problems using the maintainability and availability analyses by using theoretical approach.

TEXT BOOKS

- 1. Shortle J.F, Gross D, Thompson J.M, Harris C.M., "Fundamentals of Queueing Theory", John Wiley and Sons, New York, 2018.
- 2. Balagurusamy E., "Reliability Engineering", Tata McGraw Hill Publishing Company Ltd., New Delhi,2010.

REFERENCES

- 1. Medhi J, "Stochastic models of Queueing Theory", Academic Press, Elsevier, Amsterdam, 2003
- 2. Taha, H.A., "Operations Research", 9th Edition, Pearson India Education Services, Delhi, 2016.
- 3. Trivedi, K.S., "Probability and Statistics with Reliability, Queueing and Computer Science Applications", 2nd Edition, John Wiley and Sons, 2002.
- 4. Govil A.K., "Reliability Engineering", Tata-McGraw Hill Publishing Company Ltd., New Delhi,1983.

	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
	01	02	03	04	05	06	07	80	09	10	11	12	01	O2	О3
CO1	3	3	0	0	0	0	0	0	2	0	0	2	-		-
CO2	3	3	2	0	0	0	0	0	2	0	0	2	-		-
CO3	3	3	0	2	0	0	0	0	2	0	0	2	-		-
CO4	3	3	2	0	0	0	0	0	2	0	0	2	-		-
CO5	3	3	3	2	0	0	0	0	2	0	0	2	-	1	-
Avg	3	3	1.4	8.0	0	0	0	0	2	0	0	2	-	-	-

OMG354 PRODUCTION AND OPERATIONS MANAGEMENT FOR ENTREPRENEURS

L T P C 3 0 0 3

OBJECTIVES:

- To know the basic concept and function of Production and Operation Management for entrepreneurship.
- To understand the Production process and planning.
- To understand the Production and Operations Management Control for business owners.

UNIT 1 INTRODUCTION TO PRODUCTION AND OPERATIONS MANGEMENT 9

Functions of Production Management - Relationship between production and other functions – Production management and operations management, Characteristics of modern production and operation management, organisation of production function, recent trends in production /operations management - production as an organisational function, decision making in production Operations research

UNIT 2 PRODUCTION & OPERATION SYSTEMS

9

Production Systems- principles – Models - CAD and CAM- Automation in Production - Functions and significance- Capacity and Facility Planning: Importance of capacity planning-Capacity measurement – Capacity Requirement Planning (CRP) process for manufacturing and service industry

UNIT 3 PRODUCTION & OPERATIONS PLANNING

9

TOTAL 45: PERIODS

Facility Planning – Location of facilities – Location flexibility – Facility design process and techniques – Location break even analysis-Production Process Planning: Characteristic of production process systems – Steps for production process- Production Planning Control Functions – Planning phase- Action phase- Control phase - Aggregate production planning

UNIT 4 PRODUCTION & OPERATIONS MANAGEMENT PROCESS 9

Process selection with PLC phases- Process simulation tools- Work Study – Significance – Methods, evolution of normal/ standard time – Job design and rating - Value Analysis - Plant Layout: meaning – characters — Plant location techniques - Types- MRP and Layout Design - Optimisation and Theory of Constraints (TOC) — Critical Chain Project Management (CCPM)-REL (Relationship) Chart – Assembly line balancing – Plant design optimisation -Forecasting methods.

UNIT 5 CONTROLING PRODUCTION & OPERATIONS MANAGEMENT 9

Material requirement planning (MRP)- Concept- Process and control - Inventory control systems and techniques – JIT and Lean manufacturing - Network techniques - Quality Management: Preventive Vs Breakdown maintenance for Quality – Techniques for measuring quality - Control Chart (X , R , p , np and C chart) - Cost of Quality, Continuous improvement (Kaizen) - Quality awards - Supply Chain Management - Total Quality Management - 6 Sigma approach and Zero Defect Manufacturing.

OUTCOMES:

Upon completion of this course the learners will be able :

CO 1 To understand the basics and functions of Production and Operation Management for business owners.

CO 2 To learn about the Production & Operation Systems.

CO 3 To acquaint on the Production & Operations Planning Techniques followed by entrepreneurs in Industries.

CO 4 To known about the Production & Operations Management Processes in organisations.

CO 5 To comprehend the techniques of controlling, Production and Operations in industries.

REFERENCES

1. Mikell P. Groover, Automation, Production Systems, and Computer-Integrated Manufacturing, Pearson, 2007.

- 2. Amitabh Raturi, Production and Inventory Management, , 2008.
- 3. Adam Jr. Ebert. Production and Operations Management. PHI Publication, 1992.
- 4. Muhlemann, Okland and Lockyer, Production and Operation Management, Macmillan India,1992.
- 6. Chary S.N, Production and Operations Management, TMH Publications, 2010.
- 7. Terry Hill ,Operation Management. Pal Grave McMillan (Case Study).2005.

OMG355

MULTIVARIATE DATA ANALYSIS

L T P C 3 0 0 3

OBJECTIVE:

• To know various multivariate data analysis techniques for business research.

UNIT I INTRODUCTION

9

Uni-variate, Bi-variate and Multi-variate techniques – Classification of multivariate techniques – Guidelines for multivariate analysis and interpretation.

UNIT II PREPARING FOR MULTIVARIATE ANALYSIS

9

Conceptualization of research model with variables, collection of data — Approaches for dealing with missing data — Testing the assumptions of multivariate analysis.

UNIT III MULTIPLE LINEAR REGRESSION ANALYSIS, FACTOR ANALYSIS 9

Multiple Linear Regression Analysis – Inferences from the estimated regression function – Validation of the model. -Approaches to factor analysis – interpretation of results.

UNIT IV LATENT VARIABLE TECHNIQUES

9

Confirmatory Factor Analysis, Structural equation modelling, Mediation models, Moderation models, Longitudinal studies.

UNIT V ADVANCED MULTIVARIATE TECHNIQUES

Q

Multiple Discriminant Analysis, Logistic Regression, Cluster Analysis, Conjoint Analysis, multidimensional scaling.

TOTAL: 45 PERIODS

OUTCOMES:

- Demonstrate a sophisticated understanding of the concepts and methods; know the exact scopes and possible limitations of each method; and show capability of using multivariate techniques to provide constructive guidance in decision making.
- Use advanced techniques to conduct thorough and insightful analysis, and interpret the results correctly with detailed and useful information.
- Show substantial understanding of the real problems; conduct deep analysis using correct methods; and draw reasonable conclusions with sufficient explanation and elaboration.
- Write an insightful and well-organized report for a real-world case study, including thoughtful and convincing details.
- Make better business decisions by using advanced techniques in data analytics.

REFERENCES:

- 1. Joseph F Hair, Rolph E Anderson, Ronald L. Tatham & William C. Black, Multivariate Data Analysis, Pearson Education, New Delhi, 2005.
- 2. Barbara G. Tabachnick, Linda S.Fidell, Using Multivariate Statistics, 6th Edition, Pearson, 2012.
- 3. Richard A Johnson and Dean W.Wichern, Applied Multivariate Statistical Analysis, Prentice Hall, New Delhi, 2005.
- 4. David R Anderson, Dennis J Seveency, and Thomas A Williams, Statistics for Business and Economics, Thompson, Singapore, 2002

COURSE OBJECTIVES:

To introduce the development, capabilities, applications, of Additive Manufacturing (AM), and its business opportunities.

To be acquainted with vat polymerization and material extrusion processes

To be familiar with powder bed fusion and binder jetting processes.

To gain knowledge on applications of direct energy deposition, and material jetting processes.

To impart knowledge on sheet lamination and direct write technologies.

UNIT I INTRODUCTION

9

Overview - Need - Development of Additive Manufacturing (AM) Technology: Rapid Prototyping- Rapid Tooling - Rapid Manufacturing - Additive Manufacturing. AM Process Chain - ASTM/ISO 52900 Classification - Benefits - AM Unique Capabilities - AM File formats: STL, AMF Applications: Building Printing, Bio Printing, Food Printing, Electronics Printing, Automobile, Aerospace, Healthcare. Business Opportunities in AM.

UNIT II VAT POLYMERIZATION AND MATERIAL EXTRUSION

9

Photo polymerization: Stereolithography Apparatus (SLA)- Materials -Process - top down and bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Advantages - Applications.

Material Extrusion: Fused Deposition Modeling (FDM) - Process-Materials -Applications and Limitations.

UNIT III POWDER BED FUSION AND BINDER JETTING

9

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism - Materials and Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - Process - Advantages and Applications.

Binder Jetting: Three-Dimensional Printing - Materials - Process - Benefits - Limitations - Applications.

UNIT IV MATERIAL JETTING AND DIRECTED ENERGY DEPOSITION

9

Material Jetting: Multijet Modeling- Materials - Process - Benefits - Applications.

Directed Energy Deposition: Laser Engineered Net Shaping (LENS) - Process - Material Delivery - Materials - Benefits - Applications.

UNIT V SHEET LAMINATION AND DIRECT WRITE TECHNOLOGY

9

TOTAL: 45 PERIODS

Sheet Lamination: Laminated Object Manufacturing (LOM)- Basic Principle- Mechanism: Gluing or Adhesive Bonding - Thermal Bonding - Materials - Application and Limitation.

Ink-Based Direct Writing (DW): Nozzle Dispensing Processes, Inkjet Printing Processes, Aerosol DW - Applications of DW.

COURSE OUTCOMES:

At the end of this course students shall be able to:

CO1: Recognize the development of AM technology and how AM technology propagated into various businesses and developing opportunities.

CO2: Acquire knowledge on process vat polymerization and material extrusion processes and its applications.

CO3: Elaborate the process and applications of powder bed fusion and binder jetting.

CO4: Evaluate the advantages, limitations, applications of material jetting and directed energy deposition processes.

CO5: Acquire knowledge on sheet lamination and direct write technology.

TEXT BOOKS:

 Ian Gibson, David Rosen, Brent Stucker, Mahyar Khorasani "Additive manufacturing technologies". 3rd edition Springer Cham, Switzerland. (2021). ISBN: 978-3-030-56126-0 2. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-582-1.

REFERENCES:

- 1. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN :9783446425521.
- 2. Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead Publishing., United Kingdom, 2016, ISBN: 9780081004333.
- 3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590.
- 4. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States ,2006, ISBN: 978-1-4614-9842-1.
- 5. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press., United States, 2011, ISBN: 9780849334092.

CME343

NEW PRODUCT DEVELOPMENT

L T P C 3 0 0 3

COURSE OBJECTIVES

- 1 To introduce the fundamental concepts of the new product development
- 2 To develop material specifications, analysis and process.
- 3 To Learn the Feasibility Studies & reporting of new product development.
- To study the New product qualification and Market Survey on similar products of new product development
 - To learn Reverse Engineering. Cloud points generation, converting cloud data to 3D model

UNIT – I FUNDAMENTALS OF NPD

С

Introduction – Reading of Drawing – Grid reading, Revisions, ECN (Engg. Change Note), Component material grade, Specifications, customer specific requirements – Basics of monitoring of NPD applying Gantt chart, Critical path analysis – Fundamentals of BOM (Bill of Materials), Engg. BOM & Manufacturing BOM. Basics of MIS software and their application in industries like SAP, MS Dynamics, Oracle ERP Cloud – QFD.

UNIT – II MATERIAL SPECIFICATIONS, ANALYSIS & PROCESS

9

Material specification standards – ISO, DIN, JIS, ASTM, EN, etc. – Awareness on various manufacturing process like Metal castings & Forming, Machining (Conventional, 3 Axis, 4 Axis, 5 Axis,), Fabrications, Welding process. Qualifications of parts mechanical, physical & Chemical properties and their test report preparation and submission. Fundamentals of DFMEA & PFMEA, Fundamentals of FEA, Bend Analysis, Hot Distortion, Metal and Material Flow, Fill and Solidification analysis.

UNIT – III ESSENTIALS OF NPD

9

RFQ (Request of Quotation) Processing – Feasibility Studies & reporting – CFT (Cross Function Team) discussion on new product and reporting – Concept design, Machine selection for tool making, Machining – Manufacturing Process selection, Machining Planning, cutting tool selection – Various Inspection methods – Manual measuring, CMM – GOM (Geometric Optical Measuring), Lay out marking and Cut section analysis. Tool Design and Detail drawings preparation, release of details to machine shop and CAM programing. Tool assembly and shop floor trials. Initial sample submission with PPAP documents.

UNIT – IV CRITERIONS OF NPD

9

New product qualification for Dimensions, Mechanical & Physical Properties, Internal Soundness proving through X-Ray, Radiography, Ultrasonic Testing, MPT, etc. Agreement with customer for testing frequencies. Market Survey on similar products, Risk analysis, validating samples with simulation results, Lesson Learned & Horizontal deployment in NPD.

Detailed study on PPAP with 18 elements reporting, APQP and its 5 Sections, APQP vs PPAP, Importance of SOP (Standard Operating Procedure) – Purpose & documents, deployment in shop floor. Prototyping & RPT - Concepts, Application and its advantages, 3D Printing – resin models, Sand cores for foundries; Reverse Engineering. Cloud points generation, converting cloud data to 3D model – Advantages & Limitation of RE, CE (Concurrent Engineering) – Basics, Application and its advantages in NPD (to reduce development lead time, time to Market, Improve productivity and product cost.)

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course the students would be able to

- Discuss fundamental concepts and customer specific requirements of the New Product development
- 2. Discuss the Material specification standards, analysis and fabrication, manufacturing process.
- 3. Develop Feasibility Studies & reporting of New Product development
- 4. Analyzing the New product qualification and Market Survey on similar products of new product development
- 5. Develop Reverse Engineering. Cloud points generation, converting cloud data to 3D model

TEXT BOOKS:

- 1. Product Development Sten Jonsson
- 2. Product Design & Development Karl T. Ulrich, Maria C. Young, Steven D. Eppinger

REFERENCES:

- 1. Revolutionizing Product Development Steven C Wheelwright & Kim B. Clark
- 2. Change by Design
- 3. Toyota Product Development System James Morgan & Jeffrey K. Liker
- 4. Winning at New Products Robert Brands 3rd Edition
- 5. Product Design & Value Engineering Dr. M.A. Bulsara & Dr. H.R. Thakkar

						PO								PSO	
CO	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	1	1	3	1				1	1			1	1	3	2
2	1	1	3	1				1	1			1	1	3	2
3	1	1	3	1				1	1			1	1	3	2
4	1	1	3	1				1	1			1	1	3	2
5	1	1	3	1				1	1			1	1	3	2
			•	L	ow (1)	; M	ledium	(2);	Hiç	gh (3)	•		•		

OME355 INDUSTRIAL DESIGN & RAPID PROTOTYPING TECHNIQUES

LTPC 3 0 0 3

OBJECTIVES:

The course aims to

- Outline Fundamental concepts in UI & UX
- Introduce the principles of Design and Building an mobile app
- Illustrate the use of CAD in product design
- Outline the choice and use of prototyping tools
- Understanding design of electronic circuits and fabrication of electronic devices

UNIT I UI/UX

Fundamental concepts in UI & UX - Tools - Fundamentals of design principles - Psychology and Human Factors for User Interface Design - Layout and composition for Web, Mobile and Devices - Typography - Information architecture - Color theory - Design process flow,

UNIT II APP DEVELOPMENT

9

SDLC - Introduction to App Development - Types of Apps - web Development - understanding Stack - Frontend - backend - Working with Databases - Introduction to API - Introduction to Cloud services - Cloud environment Setup- Reading and writing data to cloud - Embedding ML models to Apps - Deploying application.

UNIT III INDUSTRIAL DESIGN

9

Introduction to Industrial Design - Points, lines, and planes - Sketching and concept generation - Sketch to CAD - Introduction to CAD tools - Types of 3D modeling - Basic 3D Modeling Tools - Part creation — Assembly - Product design and rendering basics - Dimensioning & Tolerancing

UNIT IV MECHANICAL RAPID PROTOTYPING

9

Need for prototyping - Domains in prototyping - Difference between actual manufacturing and prototyping - Rapid prototyping methods - Tools used in different domains - Mechanical Prototyping; 3D Printing and classification - Laser Cutting and engraving - RD Works - Additive manufacturing

UNIT V ELECTRONIC RAPID PROTOTYPING

9

TOTAL: 45 PERIODS

Basics of electronic circuit design - lumped circuits - Electronic Prototyping - Working with simulation tool - simple PCB design with EDA

Course Outcomes

At the end of the course, learners will be able to:

- Create quick UI/UX prototypes for customer needs
- Develop web application to test product traction / product feature
- Develop 3D models for prototyping various product ideas
- Built prototypes using Tools and Techniques in a quick iterative methodology

Text Books

- 1. Peter Fiell, Charlotte Fiell, Industrial Design A-Z, TASCHEN America Llc(2003)
- 2. Samar Malik, Autodesk Fusion 360 The Master Guide.
- 3. Steve Krug, Don't Make Me Think, Revisited: A Common Sense Approach to Web Usability, Pearson,3rd edition(2014)

References

- 1. https://www.adobe.com/products/xd/learn/get-star-ted.html
- 2. https://developer.android.com/quide
- 3. https://help.autodesk.com/view/fusion360/ENU/courses/
- 4. https://help.prusa3d.com/en/category/prusaslicer204

MF3010

MICRO AND PRECISION ENGINEERING

LT PC 3 0 0 3

COURSE OBJECTIVES:

At the end of this course the student should be able to

- Learn about the precision machine tools
- Learn about the macro and micro components.
- Understand handling and operating of the precision machine tools.
- Learn to work with miniature models of existing machine tools/robots and other instruments.
- Learn metrology for micro system

UNIT I INTRODUCTION TO MICROSYSTEMS

Design, and material selection, micro-actuators: hydraulic, pneumatic, electrostatic/ magnetic etc. for medical to general purpose applications. Micro-sensors based on Thermal, mechanical, electrical properties; micro-sensors for measurement of pressure, flow, temperature, inertia, force, acceleration, torque, vibration, and monitoring of manufacturing systems.

UNIT II FABRICATION PROCESSES FOR MICRO-SYSTEMS:

9

Additive, subtractive, forming process, microsystems-Micro-pumps, micro- turbines, micro engines, micro-robot, and miniature biomedical devices

UNIT III INTRODUCTION TO PRECISION ENGINEERING

9

Machine tools, holding and handling devices, positioning fixtures for fabrication/ assembly of microsystems. Precision drives: inch worm motors, ultrasonic motors, stick- slip mechanism and other piezo-based devices.

UNIT IV PRECISION MACHINING PROCESSES

9

Precision machining processes for macro components - Diamond turning, fixed and free abrasive processes, finishing processes.

UNIT V METROLOGY FOR MICRO SYSTEMS

9

Metrology for micro systems - Surface integrity and its characterization.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon the completion of this course the students will be able to

- Select suitable precision machine tools and operate
- Apply the macro and micro components for fabrication of micro systems.
- Apply suitable machining process
- Able to work with miniature models of existing machine tools/robots and other instruments.
- Apply metrology for micro system

TEXT BOOKS:

- 1. Davim, J. Paulo, ed. Microfabrication and Precision Engineering: Research and Development. Woodhead Publishing, 2017
- 2. Gupta K, editor. Micro and Precision Manufacturing. Springer; 2017

REFERENCES:

OMF354

- 1. Dornfeld, D., and Lee, D. E., Precision Manufacturing, 2008, Springer.
- 2. H. Nakazawa, Principles of Precision Engineering, 1994, Oxford University Press.
- 3. Whitehouse, D. J., Handbook of Surface Metrology, Institute of Physics Publishing, Philadelphia PA, 1994.
- 4. Murthy.R.L, —Precision Engineering in Manufacturingll, New Age International, New Delhi, 2005

COST MANAGEMENT OF ENGINEERING PROJECTS

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Summarize the costing concepts and their role in decision making
- Infer the project management concepts and their various aspects in selection
- Interpret costing concepts with project execution
- Develop knowledge of costing techniques in service sector and various budgetary control techniques
- Illustrate with quantitative techniques in cost management

UNIT – I INTRODUCTION TO COSTING CONCEPTS

9

Objectives of a Costing System; Cost concepts in decision-making; Relevant cost, Differential cost, Incremental cost and Opportunity cost; Creation of a Database for operational control.'

INTRODUCTION TO PROJECT MANAGEMENT UNIT - II

Project: meaning, Different types, why to manage, cost overruns centres, various stages of project execution: conception to commissioning. Project execution as conglomeration of technical and nontechnical activities, Detailed Engineering activities, Pre project execution main clearances and documents, Project team: Role of each member, Importance Project site: Data required with significance, Project contracts

PROJECT EXECUTION AND COSTING CONCEPTS UNIT - III

Project execution Project cost control, Bar charts and Network diagram. Project commissioning: mechanical and process, Cost Behavior and Profit Planning Marginal Costing; Distinction between Marginal Costing and Absorption Costing; Break-even Analysis, Cost-Volume-Profit Analysis, Various decision-making problems, Pricing strategies: Pareto Analysis, Target costing, Life Cycle Costing

COSTING OF SERVICE SECTOR AND BUDGETERY CONTROL UNIT - IV

9

Just-in-time approach, Material Requirement Planning, Enterprise Resource Planning, Activity Based Cost Management, Bench Marking; Balanced Score Card and Value-Chain Analysis, Budgetary Control: Flexible Budgets; Performance budgets; Zero-based budgets.

QUANTITATIVE TECHNIQUES FOR COST MANAGEMENT

TOTAL: 45 PERIODS

Linear Programming, PERT/CPM, Transportation problems, Assignment problems, Learning Curve Theory.

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Understand the costing concepts and their role in decision making.

CO2: Understand the project management concepts and their various aspects in selection.

CO3: Interpret costing concepts with project execution.

CO4: Gain knowledge of costing techniques in service sector and various budgetary control techniques.

CO5: Become familiar with quantitative techniques in cost management.

TEXT BOOKS:

- 1. John M. Nicholas, Herman Steyn Project Management for Engineering, Business and Technology, Taylor & Francis, 2 August 2020, ISBN: 9781000092561.
- 2. Albert Lester , Project Management, Planning and Control, Elsevier/Butterworth-Heinemann, 2007, ISBN: 9780750669566, 075066956X.

REFERENCES:

- 1. Ashish K. Bhattacharya, Principles & Practices of Cost Accounting A. H. Wheeler publisher, 1991.
- 2. Charles T. Horngren and George Foster, Advanced Management Accounting, 1988.
- 3. Charles T. Horngren et al Cost Accounting a Managerial Emphasis, Prentice Hall of India, New Delhi, 2011.
- 4. Robert S Kaplan Anthony A. Alkinson, Management & Cost Accounting, 2003.
- 5. Vohra N.D., Quantitative Techniques in Management, Tata McGraw Hill Book Co. Ltd. 2007.

AU3002

LTPC 3 0 0 3

COURSE OBJECTIVES:

The objective of this course is to make the students to understand the working and characteristics of different types of batteries and their management .

BATTERIES AND MANAGEMENT SYSTEM

UNIT I ADVANCED BATTERIES

9

Li-ion Batteries-different formats, chemistry, safe operating area, efficiency, aging. Characteristics- SOC,DOD, SOH. Balancing-Passive Balancing Vs Active Balancing. Other Batteries-NCM and NCA Batteries. *NCR18650B* specifications.

UNIT II BATTERY PACK

9

Battery Pack- design, sizing, calculations, flow chart, real and simulation Model.Peak power – definition, testing methods-relationships with Power, Temperature and ohmic Internal Resistance. Cloud based and Local Smart charging.

UNITIII BATTERY MODELLING

9

Battery Modelling Methods-Equivalent Circuit Models, Electrochemical Model, Neural Network Model. ECM Comparisons- Rint model, Thevenin model, PNGV model. State space Models-Introduction. Battery Modelling software/simulation frameworks

UNIT IV BATTERY STATE ESTIMATION

9

SOC Estimation- Definition, importance, single cell Vs series batteries SOC. Estimation Methods- Load voltage, Electromotive force, AC impedance, Ah counting, Neural networks, Neuro-fuzzy forecast method, Kalman filter. Estimation Algorithms.

UNIT V BMS ARCHITECTURE AND REAL TIME COMPONENTS

9

Battery Management System- need, operation, classification. BMS ASIC-bq76PL536A-Q1 Battery Monitor IC- CC2662R-Q1 Wireless BMS MCU. Communication Modules- CAN Open-Flex Ray- CANedge1 package.ARBIN Battery Tester. BMS Development with Modeling software and Model-Based Design.

TOTAL =45 PERIODS

COURSE OUTCOMES:

At the end of this course, students will be able to

- 1. Acquire knowledge of different Li-ion Batteries performance.
- 2. Design a Battery Pack and make related calculations.
- 3. Demonstrate a BatteryModel or Simulation.
- 4. Estimate State-of-Charges in a Battery Pack.
- 5. Approach different BMS architectures during real world usage.

TEXT BOOKS

- 1. Jiuchun Jiang and Caiping Zhang, "Fundamentals and applications of Lithium-Ion batteriesin Electric Drive Vehicles", Wiley, 2015.
- 2. Davide Andrea, "Battery Management Systems for Large Lithium-Ion Battery Packs" ARTECH House, 2010.

REFERENCE BOOKS

- Developing Battery Management Systems with Simulink and Model-Based Designwhitepaper
- 2. Panasonic NCR18650B- DataSheet
- bq76PL536A-Q1- IC DataSheet
- 4. CC2662R-Q1- IC DataSheet

COURSE OBJECTIVES:

 The objective of this course is to make the students to list common types of sensor and actuators used in automotive vehicles.

UNIT I INTRODUCTION TO MEASUREMENTS AND SENSORS

9

Sensors: Functions- Classifications- Main technical requirement and trends Units and standards-Calibration methods- Classification of errors- Error analysis- Limiting error- Probable error-Propagation of error- Odds and uncertainty- principle of transduction-Classification. Static characteristics- mathematical model of transducers- Zero, First and Second order transducers- Dynamic characteristics of first and second order transducers for standard test inputs.

UNIT II VARIABLE RESISTANCE AND INDUTANCE SENSORS

(

Principle of operation- Construction details- Characteristics and applications of resistive potentiometer- Strain gauges- Resistive thermometers- Thermistors- Piezoresistive sensors Inductive potentiometer- Variable reluctance transducers:- EI pick up and LVDT

UNIT III VARIABLE AND OTHER SPECIAL SENSORS

9

Variable air gap type, variable area type and variable permittivity type- capacitor microphone Piezoelectric, Magnetostrictive, Hall Effect, semiconductor sensor- digital transducers-Humidity Sensor. Rain sensor, climatic condition sensor, solar, light sensor, antiglare sensor.

UNIT IV AUTOMOTIVE ACTUATORS

9

Electromechanical actuators- Fluid-mechanical actuators- Electrical machines- Direct-current machines- Three-phase machines- Single-phase alternating-current Machines - Duty-type ratings for electrical machines. Working principles, construction and location of actuators viz. Solenoid, relay, stepper motor etc.

UNIT V AUTOMATIC TEMPERATURE CONTROL ACTUATORS

9

Different types of actuators used in automatic temperature control- Fixed and variable displacement temperature control- Semi Automatic- Controller design for Fixed and variable displacement type air conditioning system.

TOTAL =45 PERIODS

COURSE OUTCOMES:

At the end of the course, the student will be able to

- 1. List common types of sensor and actuators used in vehicles.
- 2. Design measuring equipment's for the measurement of pressure force, temperature and flow.
- 3. Generate new ideas in designing the sensors and actuators for automotive application
- 4. Understand the operation of thesensors, actuators and electronic control.
- 5. Design temperature control actuators for vehicles.

TEXT BOOKS:

- 1. Doebelin's Measurement Systems: 7th Edition (SIE), Ernest O. Doebelin Dhanesh N. Manik McGraw Hill Publishers, 2019.
- 2. Robert Brandy, "Automotive Electronics and Computer System", Prentice Hall, 2001
- 3. William Kimberley," Bosch Automotive Handbook", 6th Edition, Robert Bosch GmbH, 2004.
- 4. Bosch Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive, 5th Edition, 2007, ISBN No: 978-3-658-01783-5.

REFERENCES:

- 1. James D Halderman, "Automotive Electrical and Electronics", Prentice Hall, USA, 2013
- 2. Tom Denton, "Automotive Electrical and Electronics Systems," Third Edition, 2004, SAE International
- 3. Patranabis.D, "Sensors and Transducers", 2nd Edition, Prentice Hall India Ltd, 2003
- 4. William Ribbens, "Understanding Automotive Electronics -An Engineering Perspective," 7th Edition, Elsevier Butterworth-Heinemann Publishers, 2012.

OBJECTIVES:

- To interpret the missile space stations, space vs earth environment.
- To explain the life support systems, mission logistics and planning.
- To deploy the skills effectively in the understanding of space vehicle configuration design.
- To explain Engine system and support of space vehicle
- To interpret nose cone configuration of space vehicle

UNIT I FUNDAMENTAL ASPECTS

9

Energy and Efficiencies of power plants for space vehicles – Typical Performance Values – Mission design – Structural design aspects during launch - role of launch environment on launch vehicle integrity.

UNIT II SELECTION OF ROCKET PROPULSION SYSTEMS

C

Ascent flight mechanics – Launch vehicle selection process – Criteria for Selection for different missions – selection of subsystems – types of staging – Interfaces – selection and criteria for stages and their role in launch vehicle configuration design.

UNIT III ENGINE SYSTEMS, CONTROLS, AND INTEGRATION

9

Propellant Budget – Performance of Complete or Multiple Rocket Propulsion Systems – Engine Design – Engine Controls – Engine System Calibration – System Integration and Engine Optimization.

UNIT IV THRUST VECTOR CONTROL

9

TVC Mechanisms with a Single Nozzle – TVC with Multiple Thrust Chambers or Nozzles – Testing – Integration with Vehicle – SITVC method – other jet control methods - exhaust plume problems in space environment

UNIT V NOSE CONE CONFIGURATION

9

Aerodynamic aspects on the selection of nose shape of a launch vehicle - design factors in the finalization of nose configuration with respect to payload - nose cone thermal protection system - separation of fairings - payload injection mechanism

OUTCOMES:

On successful completion of this course, the student will be able to

- Explain exotic space propulsion concepts, such as nuclear, solar sail, and antimatter.
- Apply knowledge in selecting the appropriate rocket propulsion systems.
- interpret the air-breathing propulsion suitable for initial stages and fly-back boosters.
- Analyze aerodynamics aspect, including boost-phase lift and drag, hypersonic, and reentry.
- Adapt from aircraft engineers moving into launch vehicle, spacecraft, and hypersonic vehicle design.

OIM352

MANAGEMENT SCIENCE

LT P C 3 0 0 3

TOTAL: 45 PERIODS

COURSE OBJECTIVES:

Of this course are

- 1. To introduce fundamental concepts of management and organization to students.
- 2. Toi mpart knowledge to students on various aspects of marketing, quality control and marketing strategies.
- 3. To make students familiarize with the concepts of human resources management.
- 4. To acquaint students with the concepts of project management and cost analysis.
- 5. To make students familiarize with the concepts of planning process and business strategies.

UNITI INTRODUCTION TO MANAGEMENT AND ORGANISATION

9

Concepts of Management and organization- nature, importance and Functions of Management, Systems Approach to Management - Taylor's Scientific Management Theory- Fayal's Principles of Management- Maslow's theory of Hierarchy of Human Needs- Douglas McGregor's TheoryXandTheoryY-HertzbergTwoFactorTheoryofMotivation-

LeadershipStyles, Social responsibilities of Management, Designing Organisational Structures: Basic concepts related to Organisation - Departmentation and Decentralisation.

UNITII OPERATIONS AND MARKETING MANAGEMENT

a

Principles and Types of Plant Layout-Methods of Production(Job, batch and Mass Production), Work Study - Basic procedure involved in Method Study and Work Measurement - BusinessProcessReengineering(BPR)-

StatisticalQualityControl:controlchartsforVariablesandAttributes (simple Problems) and Acceptance Sampling, Objectives of Inventory control, EOQ,ABC Analysis, Purchase Procedure, Stores Management and Store Records - JIT System,Supply Chain Management, Functions of Marketing, Marketing Mix, and Marketing Strategies based on ProductLifeCycle.

UNITIII HUMAN RESOURCES MANAGEMENT

9

Concepts of HRM, HRD and Personnel Management and Industrial Relations (PMIR), HRM vs PMIR, Basic functions of HR Manager:Manpower planning, Recruitment, Selection, TrainingandDevelopment,WageandSalaryAdministration,Promotion,Transfer,PerformanceAppr aisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating – Capability Maturity Model (CMM)Levels.

UNITIV PROJECT MANAGEMENT

9

Network Analysis, Programme Evaluation and Review Technique (PERT), Critical Path Method(CPM), identifying critical path, Probability of Completing the project within given time, Project Cost Analysis, Project Crashing (simple problems).

UNITY STRATEGIC MANAGEMENT AND CONTEMPORARY STRATEGIC ISSUES

Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and Implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Cardas Contemporary Business Strategies.

TOTAL: 45 PERIODS

OURSEOUTCOMES:

Upon completion of the course, Students will be able to

CO1:Plananorganizationalstructureforagivencontextintheorganisationtocarryoutproductionopera tionsthroughWork-study.

CO2: Survey the markets, customers and competition better and price the given products appropriate years of the competition o

CO3:Ensurequalityforagivenproduct or service.

CO4:Plan, schedule and control projects through PERTandCPM.

CO5:Evaluate strategyforabusiness orserviceorganisation.

CO'a	PO's												PSO'	S	
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3			3	3	3		3	3	2			2	3	
2	3			2	3	3		2	3	2				2	
3	3			3	2	2		3	2	2					2
4	3			3	3	2		3	2	3					3
5	3			2	3	3		2	3	3			2	1	
AVg.	3			2.6	2.8	2.6		2.6	2.6	2.4			2	2	2.5

TEXTBOOKS:

- 1. KanishkaBedi, Production and Operations Management, Oxford University Press, 2007.
- 2. Stoner, Freeman, Gilbert, Management, 6th Ed, Pearson Education, New Delhi, 2004.
- 3. ThomasN. Duening & John M.Ivancevich Management Principles and

Guidelines, Biztantra, 2007.

4. P.VijayKumar, N.Appa Rao and Ashnab, Chnalill, CengageLearning India, 2012.

REFERECES:

- 1. KotlerPhilip and KellerKevinLane: Marketing Management, Pearson, 2012.
- 2. KoontzandWeihrich: Essentials of Management, McGrawHill, 2012.
- 3. Lawrence RJauch, R. Guptaand William F. Glueck: Business Policy and Strategic Management Science, McGrawHill, 2012.
- 4. SamuelC .Certo: Modern Management, 2012.

OIM353

PRODUCTION PLANNING AND CONTROL

LT P C 3 0 0 3

COURSE OBJECTIVES:

- To understand the concept of production planning and control act work study,
- To apply the concept of product planning,
- To analyze the production scheduling,
- To apply the Inventory Control concepts.
- To prepare the manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

UNIT I INTRODUCTION

9

Objectives and benefits of planning and control-Functions of production control-Types of production- job- batch and continuous-Product development and design-Marketing aspect - Functional aspects- Operational aspect-Durability and dependability aspect aesthetic aspect. Profit consideration- Standardization, Simplification & specialization- Break even analysis-Economics of a new design.

UNITII WORK STUDY

9

Method study, basic procedure-Selection-Recording of process - Critical analysis, Development - Implementation - Micro motion and memo motion study – work measurement - Techniques of work measurement - Time study - Production study - Work sampling - Synthesis from standard data - Predetermined motion time standards.

UNITIII PRODUCT PLANNING AND PROCESS PLANNING

9

Product planning-Extending the original product information-Value analysis-Problems in lack of product planning-Process planning and routing-Pre requisite information needed for process planning- Steps in process planning-Quantity determination in batch production-Machine capacity, balancing- Analysis of process capabilities in a multi product system.

UNITIV PRODUCTION SCHEDULING

9

Production Control Systems-Loading and scheduling-Master Scheduling-Scheduling rules-Gantt charts-Perpetual loading-Basic scheduling problems - Line of balance - Flow production scheduling- Batch production scheduling-Product sequencing - Production Control systems-Periodic batch control-Material requirement planning kanban - Dispatching-Progress reporting and expediting- Manufacturing lead time-Techniques for aligning completion times and due dates.

UNIT V INVENTORY CONTROL AND RECENT TRENDS IN PPC

9

TOTAL: 45 PERIODS

Inventory control-Purpose of holding stock-Effect of demand on inventories-Ordering procedures. Two bin system - Ordering cycle system-Determination of Economic order quantity and economic lot size- ABC analysis - Recorder procedure-Introduction to computer integrated production planning systems- elements of JUST IN TIME SYSTEMS-Fundamentals of MRP II and ERP.

COURSE OUTCOMES:

Upon completion of this course,

231

- CO1:The students can able to prepare production planning and control act work study,
- CO2:The students can able to prepare product planning,
- CO3:The students can able to prepare production scheduling,
- CO4:The students can able to prepare Inventory Control.
- CO5:They can plan manufacturing requirements manufacturing requirement Planning (MRP II) and Enterprise Resource Planning (ERP).

TEXT BOOKS:

- 1. James. B. Dilworth, "Operations management Design, Planning and Control for manufacturing and services" Mcgraw Hill International edition 1992.
- 2. Martand Telsang, "Industrial Engineering and Production Management", First edition, S. Chand and Company, 2000.

REFERENCES

- 1. Chary. S.N., "Theory and Problems in Production & Operations Management", Tata McGraw Hill, 1995.
- 2. Elwood S.Buffa, and Rakesh K.Sarin, "Modern Production / Operations Management", 8th Edition John Wiley and Sons, 2000.
- 3. Jain. K.C. & Aggarwal. L.N., "Production Planning Control and Industrial Management", Khanna Publishers, 1990.
- 4. Kanishka Bedi, "Production and Operations management", 2nd Edition, Oxford university press, 2007.
- 5. Melynk, Denzler, "Operations management A value driven approach" Irwin Mcgraw hill.
- 6. Norman Gaither, G. Frazier, "Operations Management" 9th Edition, Thomson learning IE, 2007
- 7. Samson Eilon, "Elements of Production Planning and Control", Universal Book Corpn.1984
- 8. Upendra Kachru, "Production and Operations Management Text and cases" 1st Edition, Excel books 2007

CO's	PO's												PSO's	3	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	3			3		1				1		3		
2	3	2			3									2	
3		2			3									2	
4		2	2						10						
5	3	3	2						4					1	
AVg.	3	2.6	2		3		1				1		3	1.8	

OIE353

OPERATIONS MANAGEMENT

LTPC 3003

COURSE OBJECTIVE:

- Recognize and appreciate the concept of Production and Operations Management in creating and enhancing a firm's competitive advantages.
- Describe the concept and contribution of various constituents of Production and Operations Management (both manufacturing and service).
- Relate the interdependence of the operations function with the other key functional areas of a firm.
- Teach analytical skills and problem-solving tools to the analysis of the operations problems.
- Apply scheduling and Lean Concepts for improving System Performance.

UNIT I INTRODUCTION TO OPERATIONS MANAGEMENT

9

Operations Management – Nature, Importance, historical development, transformation processes, differences between services and goods, a system perspective, functions,

challenges, current priorities, recent trends; Operations Strategy - Strategic fit , framework; Supply Chain Management

UNIT II FORECASTING, CAPACITY AND FACILITY DESIGN

9

Demand Forecasting - Need, Types, COURSE OBJECTIVES and Steps. Overview of Qualitative and Quantitative methods. Capacity Planning - Long range, Types, Developing capacity alternatives. Overview of sales and operations planning. Overview of MRP, MRP II and ERP. Facility Location - Theories, Steps in Selection, Location Models. Facility Layout - Principles, Types, Planning tools and techniques.

UNIT III DESIGN OF PRODUCT, PROCESS AND WORK SYSTEMS 9

Product Design – Influencing factors, Approaches, Legal, Ethical and Environmental issues. Process – Planning, Selection, Strategy, Major Decisions. Work Study – COURSE OBJECTIVES, Procedure. Method Study and Motion Study. Work Measurement and Productivity – Measuring Productivityand Methods to improve productivity.

UNIT IV MATERIALS MANAGEMENT

9

Materials Management – COURSE OBJECTIVES, Planning, Budgeting and Control. Purchasing – COURSE OBJECTIVES, Functions, Policies, Vendor rating and Value Analysis. Stores Management – Nature, Layout, Classification and Coding. Inventory – COURSE OBJECTIVES, Costs and control techniques. Overview of JIT.

UNIT V SCHEDULING AND PROJECT MANAGEMENT

9

Project Management – Scheduling Techniques, PERT, CPM; Scheduling - work centers – nature, importance; Priority rules and techniques, shopfloor control; Flow shop scheduling – Johnson's Algorithm – Gantt charts; personnel scheduling in services.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

- **CO1:** The students will appreciate the role of Production and Operations management in enabling and enhancing a firm's competitive advantages in the dynamic business environment.
- **CO2:** The students will obtain sufficient knowledge and skills to forecast demand for Production and Service Systems.
- **CO3:** The students will able to Formulate and Assess Aggregate Planning strategies and Material Requirement Plan.
- **CO4:** The students will be able to develop analytical skills to calculate capacity requirements and developing capacity alternatives.
- **CO5:** The students will be able to apply scheduling and Lean Concepts for improving System Performance.

CO's- PO's & PSO's MAPPING

CO's	PO's												PSO'	S	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3											2			
2		3	3											3	3
3		2	3	3									2	3	
4		3	3	3									2	3	
5			3	2											
AVg.	3	2.6	3	2.6								2	2	3	3

TEXT BOOKS

- Richard B. Chase, Ravi Shankar, F. Robert Jacobs, Nicholas J. Aquilano, Operations and Supply Management, Tata McGraw Hill, 12th Edition, 2010.
- 2. Norman Gaither and Gregory Frazier, Operations Management, South Western CengageLearning, 2002.

REFERENCES

1. William J Stevenson, Operations Management, Tata McGraw Hill, 9th Edition, 2009.

- 2. Russel and Taylor, Operations Management, Wiley, Fifth Edition, 2006.
- 3. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2004.
- 4. Chary S. N, Production and Operations Management, Tata McGraw Hill, Third Edition, 2008.
- 5. Aswathappa K and Shridhara Bhat K, Production and Operations Management, Himalaya Publishing House, Revised Second Edition, 2008.
- 6. Mahadevan B, Operations Management Theory and practice, Pearson Education, 2007.
- 7. Pannerselvam R, Production and Operations Management, Prentice Hall India, SecondEdition. 2008.

OSF352 INDUSTRIAL HYGIENE

L T P C 3 0 0 3

COURSE OBJECTIVES:

- Demonstrate an understanding of how occupational hygiene standards are set and used in work health and safety.
- Compare and contrast the roles of environmental and biological monitoring in work health and safety
- Outline strategies for identifying, assessing and controlling risks associated with airborne gases, vapours and particulates
- Discuss how personal protective equipment can be used to reduce risks associated with workplace exposures
- Provide high-level advice on managing and controlling noise and noise-related hazards

UNIT I: INTRODUCTION AND SCOPE

9

Occupational Health and Environmental Safety Management - Principles practices. Common Occupational diseases: Occupational Health Management Services at the work place. Preemployment, periodic medical examination of workers, medical surveillance for control of occupational diseases and health records.

UNIT II: MONITORING FOR SAFETY, HEALTH & ENVIRONMENT

Occupational Health and Environment Safety Management System, ILO and EPA Standards Industrial Hygiene: Definition of Industrial Hygiene, Industrial Hygiene: Control Methods, Substitution, Changing the process, Local Exhaust Ventilation, Isolation, Wet method, Personal hygiene, housekeeping and maintenance, waste disposal, special control measures.

UNIT III: OCCUPATIONAL HEALTH AND ENVIRONMENTAL SAFETY EDUCATION 9 Element of training cycle, Assessment of needs. Techniques of training, design and development of training programs. Training methods and strategies types of training. Evaluation and review of training programs. Occupational Health Hazards, Promoting Safety, Safety and Health training, Stress and Safety, Exposure Limit.

UNIT IV: OCCUPATIONAL SAFETY, HEALTH AND ENVIRONMENT MANAGEMENT 9
Bureau of Indian standards on safety and health 14489 - 1998 and 15001 - 2000, OSHA,
Process Safety Management (PSM) as per OSHA, PSM principles, OHSAS - 18001, EPA
Standards, Performance measurements to determine effectiveness of PSM. Importance of
Industrial safety, role of safety department,

UNIT-V INDUSTRIAL HAZARDS

9

i. Radiation: Types and effects of radiation on human body, Measurement and detection of radiation intensity. Effects of radiation on human body, Measurement – disposal of radioactive waste, Control of radiation ii. Noise and Vibration: Sources, and its control, Effects of noise on the auditory system and health, Measurement of noise, Different air pollutants in industries, Effect of different gases and particulate matter, acid fumes, smoke, fog on human health, Vibration: effects.

TOTAL PERIODS: 45

COURSE OUTCOMES:

Students able to

CO1: Explain and apply human factors engineering concepts in both evaluation of existing systems and design of new systems

CO2: Specify designs that avoid occupation related injuries

CO3: Define and apply the principles of work design, motion economy, and work environment design.

CO4: Identify the basic human sensory, cognitive, and physical capabilities and limitations with respect to human-machine system performance.

CO5: Acknowledge the impact of workplace design and environment on productivity

TEXT BOOKS:

- 1. R. K. Jain and Sunil S. Rao , Industrial Safety , Health and Environment Management Systems, Khanna publishers, New Delhi (2006)
- 2. Slote. L, Handbook of Occupational Safety and Health, John Willey and Sons, New York.

REFERENCES:

- 1. Jeanne MagerStellman, Encyclopedia of Occupational Health and Safety (ILO) Ms. Irma Jourdan publication
- 2. Frank P Lees Loss of prevention in Process Industries, Vol. 1 and 2,
- 3. ButterworthHeinemann Ltd., London (1991). 2. Industrial Safety National Safety Council of India
- 4. Frank P Lees Loss of prevention in Process Industries , Vol. 1 and 2, Butterworth-Heinemann Ltd., London
- 5. R. K. Jain and Sunil S. Rao, Industrial Safety, Health and Environment Management Systems, Khanna publishers, New Delhi (2006).

CO's- PO's & PSO's MAPPING

						PC	D's							PSO's	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2		2		2	-	-	-	-	-	2	-	-	-	-
2			2		-	-	1	-	-	-	1	-	-	-	-
3			-		2	-		-	-	-	2		-	-	-
4	-		-		-		-		2	15	3	-	-	-	-
5	-		- 1			-	-	1	-	7-	1-		-	-	-
AVg.	2	-	2	-		-	1	1	2	· -	2		-	-	-

OSF353 CHEMICAL PROCESS SAFETY L T P C 3 0 0 3

COURSE OBJECTIVES

- Teach the principles of safety applicable to the design, and operation of chemical process plants.
- Ensure that potential hazards are identified and mitigation measures are in place to prevent unwanted release of energy.
- Learn about the hazardous chemicals into locations that could expose employees and others to serious harm.
- Focuses on preventing incidents and accidents during large scale manufacturing of chemicals and pharmaceuticals.
- Ensure that the general design of the plant is capable of complying with the dose limits in force and with the radioactive releases.

UNIT I SAFETY IN THE STORAGE AND HANDLING OF CHEMICALS AND GASES 9

Types of storage-general considerations for storage layouts- atmospheric venting, pressure and temperature relief - relief valve sizing calculations - storage and handling of hazardous chemicals and industrial gases, safe disposal methods, reaction with other chemicals, hazards during transportation - pipe line transport - safety in chemical laboratories.

UNIT II CHEMICAL REACTION HAZARDS

9

Hazardous inorganic and organic reactions and processes, Reactivity as a process hazard, Detonations, Deflagrations, and Runaways, Assessment and Testing strategies, Self - heating hazards of solids, Explosive potential of chemicals, Structural groups and instability of chemicals, Thermochemical screening,

UNIT III SAFETY IN THE DESIGN OF CHEMICAL PROCESS PLANTS

9

Design principles -Process design development -types of designs, feasibility survey, preliminary design, Flow diagrams, piping and instrumentation diagram, batch versus continuous operation, factors in equipment scale up and design, equipment specifications - reliability and safety in designing - inherent safety - engineered safety - safety during startup and shutdown - non destructive testing methods - pressure and leak testing - emergency safety devices - scrubbers and flares- new concepts in safety design and operation- Pressure vessel testing standards-Inspection techniques for boilers and reaction vessels.

UNIT IV SAFETY IN THE OPERATION OF CHEMICAL PROCESS PLANTS

9

Properties of chemicals - Material Safety Data Sheets - the various properties and formats used - methods available for property determination. Operational activities and hazards -standards operating procedures - safe operation of pumps, compressors, heaters, column, reactors, pressure vessels, storage vessels, piping systems - effects of pressure, temperature, Flow rate and humidity on operations - corrosion and control measures- condition monitoring - control valves - safety valves - pressure reducing valves, drains, bypass valves, inert gases. Chemical splashes, eye irrigation and automatic showers.

UNIT V SAFETY AND ANALYSIS

9

Safety vs reliability- quantification of basic events, system safety quantification, Human error analysis, Accident investigation and analysis, OSHAS 18001 and OSHMS.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Students able to

- **CO1** Differentiate between inherent safety and engineered safety and recognize the importance of safety in the design of chemical process plants.
- CO2 Develop thorough knowledge about safety in the operation of chemical plants.
- CO3 Apply the principles of safety in the storage and handling of gases.
- **CO4** Identify the conditions that lead to reaction hazards and adopt measures to prevent them.
- CO5 Develop thorough knowledge about

TEXT BOOK

- 1 David A Crowl& Joseph F Louvar,"Chemical Process safety", Pearson publication, 3rd Edition, 2014
- 2 Maurice Jones .A,"Fire Protection Systems,2nd edition, Jones & Bartlett Publishers,2015

REFERENCES:

- 1. Ralph King and Ron Hirst,"King's safety in the process industries", Arnold, London, 1998.
- Industrial Environment and its Evolution and Control, NIOSH Publication, 1973.
- 3. National Safety Council," Accident prevention manual for industrial operations". Chicago, 1982.
- 4. Lewis, Richard. J., Sr, "Sax's dangerous properties of materials". (Ninth edition). Van Nostrand Reinhold, New York, 1996.
- 5. Roy E Sanders, "Chemical Process Safety",3rd Edition, Gulf professional publishing, 2006

CO's-PO's & PSO's MAPPING

			PO's										PS	O's	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2	3	-	-	-	1	-	-	1	-	-	-	2	-	-
2	1			2	-	-	-	-	1	-		-	-	2	-
3	-	3		1	-	-	-	2	-	-	1	-	-	-	-
4	-	2	-		-	1	-	-	1	-		-	-	-	2
5	-	2	3		-	-	-	1	-	-	1	-	-	-	-
AVg.	2	2.5	3	1.5	-	1	-	1.5	1	-	1		2	2	2

OML352 ELECTRICAL, ELECTRONIC AND MAGNETIC MATERIALS

LTPC 3003

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Understanding the importance of various materials used in electrical, electronics and magnetic applications
- 2. Acquiring knowledge on the properties of electrical, electronics and magnetic materials.
- 3. Gaining knowledge on the selection of suitable materials for the given application
- 4. Knowing the fundamental concepts in Semiconducting materials
- 5. Getting equipped with the materials used in optical and optoelectronic applications.

UNIT- I DIELECTRIC MATERIALS

a

Dielectric as Electric Field Medium, leakage currents, dielectric loss, dielectric strength, breakdown voltage, breakdown in solid dielectrics, flashover, liquid dielectrics, electric conductivity in solid, liquid and gaseous dielectrics, Ferromagnetic materials, properties of ferromagnetic materials in static fields, spontaneous, polarization, curie point, antiferromagnetic materials, piezoelectric materials, pyroelectric materials.

UNIT – II MAGNETIC MATERIALS

9

Classification of magnetic materials, spontaneous magnetization in ferromagnetic materials, magnetic Anisotropy, Magnetostriction, diamagnetism, magnetically soft and hard materials, special purpose materials, feebly magnetic materials, Ferrites, cast and cermet permanent magnets, ageing of magnets. Factors effecting permeability and Hysteresis

UNIT - III SEMICONDUCTOR MATERIALS

9

Properties of semiconductors, Silicon wafers, integration techniques, Large and very large scale Integration techniques. Concept of superconductivity; theories and examples for high temperature superconductivity; discussion on specific superconducting materials; comments on fabrication and engineering applications.

UNIT – IV MATERIALS FOR ELECTRICAL APPLICATIONS

9

Materials used for Resistors, rheostats, heaters, transmission line structures, stranded conductors, bimetals fuses, soft and hard solders, electric contact materials, electric carbon materials, thermocouple materials. Solid, Liquid and Gaseous insulating materials, Effect of moisture on insulation.

UNIT – V OPTICAL AND OPTOELECTRONIC MATERIALS

9

TOTAL: 45 PERIODS

Principles of photoconductivity - effect of impurities - principles of luminescence-laser principles - He-Ne, injection lasers, LED materials - binary, ternary photoelectronic materials - LCD materials - photo detectors - applications of optoelectronic materials - optical fibres and materials - electro optic modulators - Kerr effect - Pockels effect.

COURSE OUTCOMES:

After completion of this course, the students will be able to

- 1. Understand various types of dielectric materials, their properties in various conditions.
- 2. Evaluate magnetic materials and their behavior.

- 3. Evaluate semiconductor materials and technologies.
- 4. Select suitable materials for electrical engineering applications.
- 5. Identify right material for optical and optoelectronic applications

TEXT BOOKS:

- 1. Pradeep Fulay, "Electronic, Magnetic and Optical materials", CRC Press, taylor and Francis, 2 nd illustrated edition, 2017.
- 2. "R K Rajput", "A course in Electrical Engineering Materials", Laxmi Publications, 2009.

REFERENCE BOOKS:

- 1. T K Basak, "A course in Electrical Engineering Materials", New Age Science Publications, 2009
- 2. TTTI Madras, "Electrical Engineering Materials", McGraw Hill Education, 2004.
- 3. Adrianus J. Dekker, "Electrical Engineering Materials", PHI Publication, 2006.
- 4. S. P. Seth, P. V. Gupta "A course in Electrical Engineering Materials", Dhanpat Rai & amp; Sons, 2011.
- 5. C. Kittel, "Introduction to Solid State Physics", 7th Edition, John Wiley & Sons, Singapore, (2006).

	PO1	PO2	РО3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
C01	3	2	2	3				7	Y	5)	X	2	2	2	1
C02	3	1	2	2				١,	=	1	1	2	2	2	1
C03	3	2	1	2	7	7		1				2	2	2	1
CO4	3	2	1	2								2	2	2	2
CO5	3	2	2	2								2	2	2	1
Avg	3	1.8	1.6	2.2			31		7			2	2	2	1.2

OML353

NANOMATERIALS AND APPLICATIONS

L T P C 3 0 0 3

COURSE OBJECTIVES:

The main learning objective of this course is to prepare the students for:

- 1. Understanding the evolution of nanomaterials in the scientific era and make them to understand different types of nanomaterials for the future engineering applications
- 2. Gaining knowledge on dimensionality effects on different properties of nanomaterials
- 3. Getting acquainted with the different processing techniques employed for fabricating nanomaterials
- 4. Having knowledge on the different characterisation techniques employed to characterise the nanomaterials
- 5. Acquiring knowledge on different applications of nanomaterials in different disciplines of engineering.

UNIT I NANOMATERIALS

(

Introduction, Classification: 0D, 1D, 2D, 3D nanomaterials and nano-composites, their mechanical, electrical, optical, magnetic properties; Nanomaterials versus bulk materials.

UNIT II THERMODYNAMICS & KINETICS OF NANOSTRUCTURED MATERIALS 9
Size and interface/interphase effects, interfacial thermodynamics, phase diagrams, diffusivity, grain growth, and thermal stability of nanomaterials.

UNIT III PROCESSING

С

Bottom-up and top-down approaches for the synthesis of nanomaterials, mechanical alloying, chemical routes, severe plastic deformation, and electrical wire explosion technique.

UNIT IV STRUCTURAL CHARACTERISTICS

9

Principles of emerging nanoscale X-ray techniques such as small angle X-ray scattering and X-ray absorption fine structure (XAFS), electron and neutron diffraction techniques and their application to nanomaterials; SPM, Nanoindentation, Grain size, phase formation, texture, stress analysis

UNIT V APPLICATIONS

9

Applications of nanoparticles, quantum dots, nanotubes, nanowires, nanocoatings; applications in electronic, electrical and medical industries

TOTAL: 45 PERIODS

COURSE OUTCOMES:

After completion of this course, the students will be able to

- 1. Evaluate nanomaterials and understand the different types of nanomaterials
- 2. Recognise the effects of dimensionality of materials on the properties
- 3. Process different nanomaterials and use them in engineering applications
- 4. Use appropriate techniques for characterising nanomaterials
- 5. Identify and use different nanomaterials for applications in different engineering fields.

TEXT BOOKS:

- 1. Bhusan, Bharat (Ed), "Springer Handbook of Nanotechnology", 2nd edition, 2007.
- 2. Carl C. Koch (ed.), NANOSTRUCTURED MATERIALS, Processing, Properties and Potential Applications, NOYES PUBLICATIONS, Norwich, New York, U.S.A.

REFERENCES:

- 1. Poole C.P, and Owens F.J., Introduction to Nanotechnology, John Wiley 2003
- Nalwa H.S., Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers 2004
- Zehetbauer M.J. and Zhu Y.T., Bulk Nanostructured Materials, Wiley 2008
- 4. Wang Z.L., Characterization of Nanophase Materials, Wiley 2000
- 5. Gutkin Y., Ovid'ko I.A. and Gutkin M., Plastic Deformation in Nanocrystalline Materials, Springer 2004

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO 1	PSO 2	PSO 3
C01	2	2	2	3	C C T	un	ΔII	0 II	VM	ΛW	LED	2	1	2	
C02	3	1	2	2	23.1	ПK	VU	υП	NΝ	UTT	LED	2	2	2	1
C03	3	2	1	2								2	2	2	
CO4	3	1		2								2	2	2	2
CO5	3	2	2	2								2	2	2	1
Avg	2.8	1.6	1.7	2.2								2	1.8	2	1.3

COURSE OBJECTIVES:

- 1. To knowledge on fluid power principles and working of hydraulic pumps
- 2. To obtain the knowledge in hydraulic actuators and control components
- 3. To understand the basics in hydraulic circuits and systems
- 4. To obtain the knowledge in pneumatic and electro pneumatic systems
- 5. To apply the concepts to solve the trouble shooting

UNIT – I FLUID POWER PRINICIPLES AND HYDRAULIC PUMPS

9

Introduction to Fluid power – Advantages and Applications – Fluid power systems – Types of fluids - Properties of fluids and selection – Basics of Hydraulics – Pascal's Law – Principles of flow - Friction loss – Work, Power and Torque Problems, Sources of Hydraulic power : Pumping Theory – Pump Classification – Construction, Working, Design, Advantages, Disadvantages, Performance, Selection criteria of Linear and Rotary – Fixed and Variable displacement pumps – Problems.

UNIT – II HYDRAULIC ACTUATORS AND CONTROL COMPONENTS

Hydraulic Actuators: Cylinders – Types and construction, Application, Hydraulic cushioning – Hydraulic motors - Control Components: Direction Control, Flow control and pressure control valves – Types, Construction and Operation – Servo and Proportional valves – Applications – Accessories: Reservoirs, Pressure Switches – Applications – Fluid Power ANSI Symbols – Problems.

UNIT - III HYDRAULIC CIRCUITS AND SYSTEMS

q

Accumulators, Intensifiers, Industrial hydraulic circuits – Regenerative, Pump Unloading, Double Pump, Pressure Intensifier, Air-over oil, Sequence, Reciprocation, Synchronization, Fail-Safe, Speed Control, Hydrostatic transmission, Electro hydraulic circuits, Mechanical hydraulic servo systems.

UNIT – IV PNEUMATIC AND ELECTRO PNEUMATIC SYSTEMS

9

Properties of air – Perfect Gas Laws – Compressor – Filters, Regulator, Lubricator, Muffler, Air control Valves, Quick Exhaust Valves, Pneumatic actuators, Design of Pneumatic circuit – Cascade method – Electro Pneumatic System – Elements – Ladder diagram – Problems, Introduction to fluidics and pneumatic logic circuits

UNIT – V TROUBLE SHOOTING AND APPLICATIONS

9

TOTAL: 45 PERIODS

Installation, Selection, Maintenance, Trouble Shooting and Remedies in Hydraulic and Pneumatic systems, Design of hydraulic circuits for Drilling, Planning, Shaping, Surface grinding, Press and Forklift applications. Design of Pneumatic circuits for Pick and Place applications and tool handling in CNC Machine tools – Low cost Automation – Hydraulic and Pneumatic power packs.

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

- CO 1: Analyze the methods in fluid power principles and working of hydraulic pumps
- CO 2: Recognize the concepts in hydraulic actuators and control components
- CO 3: Obtain the knowledge in basics of hydraulic circuits and systems
- CO 4: Know about the basics concept in pneumatic and electro pneumatic systems
- CO 5: Apply the concepts to solve the trouble shooting hydraulic and pneumatics

				Мар	ping	of C	Os v	vith l	POs	and	PSOs					
	&							POs	5					PS	Os	
PSOs		1	2	3	4	12	1	2	3							
CO1		3	2	1		1	2	2	1							
CO2		3	2	1		2	2						1	2	2	1
CO3		3	2	1		2	2						1	2	2	1
CO4		3	2	1		2	2						1	2	2	1
CO5		3	2	1		2	2						1	2	2	1

CO/PO & PSO Average	3	2	1		2	2					1	2	2	1
		•	1 – S	light,	2 – 1	Mode	erate,	3 –	Subs	tantial				

TEXT BOOKS

- 1. Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.
- 2. James A. Sullivan, "Fluid Power Theory and Applications", Fourth Edition, Prentice Hall, 1997.

REFERENCES

- 1. Shanmugasundaram.K, "Hydraulic and Pneumatic Controls". Chand & Co, 2006.
- 2. Majumdar, S.R., "Oil Hydraulics Systems Principles and Maintenance", Tata McG Raw Hill, 2001.
- 3. Majumdar, S.R., "Pneumatic Systems Principles and Maintenance", Tata McGRaw Hill, 2007.
- 4. Dudley, A. Pease and John J Pippenger, "Basic Fluid Power", Prentice Hall, 1987
- 5. Srinivasan. R, "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 2008
- 6. Joshi.P, Pneumatic Control", Wiley India, 2008.
- 7. Jagadeesha T, "Pneumatics Concepts, Design and Applications", Universities Press, 2015.

OMR353 SENSORS L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To learn the various types of sensors, transducers, sensor output signal types, calibration techniques, formulation of system equation and its characteristics.
- 2. To understand basic working principle, construction, Application and characteristics of displacement, speed and ranging sensors.
- 3. To understand and analyze the working principle, construction, application and characteristics of force, magnetic and heading sensors.
- 4. To learn and analyze the working principle, construction, application and characteristics of optical, pressure, temperature and other sensors.
- 5. To familiarize students with different signal conditioning circuits design and data acquisition system.

UNIT – I SENSOR CLASSIFICATION, CHARACTERISTICS AND SIGNAL TYPES 9Basics of Measurement – Classification of Errors – Error Analysis – Static and Dynamic Characteristics of Transducers – Performance Measures of Sensors – Classification of Sensors – Sensor Calibration Techniques – Sensor Outputs - Signal Types - Analog and Digital Signals, PWM and PPM.

UNIT - II DISPLACEMENT, PROXIMITY AND RANGING SENSORS 9
Displacement Sensors - Brush Encoders - Potentiometers, Resolver, Encoders - Optical, Magnetic, Inductive, Capacitive, LVDT - RVDT - Synchro - Microsyn, Accelerometer - Range Sensors - Ultrasonic Ranging - Reflective Beacons - Laser Range Sensor (LIDAR) - GPS - RF Beacons.

UNIT – III FORCE, MAGNETIC AND HEADING SENSORS

Strain Gage – Types, Working, Advantage, Limitation, and Applications: Load Measurement – Force and Torque Measurement - Magnetic Sensors – Types, Principle, Advantage, Limitation, and Applications - Magneto Resistive – Hall Effect, Eddy Current Sensor - Heading Sensors – Compass, Gyroscope and Inclinometers.

9

UNIT - IV OPTICAL, PRESSURE, TEMPERATURE AND OTHER SENSORS
 Photo Conductive Cell, Photo Voltaic, Photo Resistive, LDR - Fiber Optic Sensors - Pressure - Diaphragm - Bellows - Piezoelectric - Piezo-resistive - Acoustic, Temperature - IC, Thermistor, RTD, Thermocouple - Non Contact Sensor - Chemical Sensors - MEMS Sensors - Smart Sensors.

Need for Signal Conditioning – Resistive, Inductive and Capacitive Bridges for Measurement - DC and AC Signal Conditioning - Voltage, Current, Power and Instrumentation Amplifiers – Filter and Isolation Circuits – Fundamentals of Data Acquisition System

TOTAL: 45 PERIODS

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Understand various sensor effects, sensor characteristics, signal types, calibration methods and obtain transfer function and empirical relation of sensors. They can also analyze the densor response.

CO2: Analyze and select suitable sensor for displacement, proximity and range measurement.

CO3: Analyze and select suitable sensor for force, magnetic field, speed, position and direction measurement.

CO4: Analyze and Select suitable sensor for light detection, pressure and temperature measurement and also familiar with other miniaturized smart sensors.

CO5: Select and design suitable signal conditioning circuit with proper compensation and linearizing element based on sensor output signal.

Mapping of COs with POs and PSOs																	
COs/POs &			- T		POs						After the second				PSOs		
PSOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3		
CO1	3	3	2	11							1	2	3	2	1		
CO2	3	3	2	1	1	1				7	1	2	3	2	1		
CO3	3	3	2	1	1	1					1	2	3	2	1		
CO4	3	3	2	1	1	1			. ·		1	2	3	2	1		
CO5	3	3	2	1	1	1					1	2	3	2	1		
CO/PO & PSO	3	3	2	0.	0.	0.8					0.8	2	3	2	1		
Average				8	8	- 4											
			1 – Sli	ght, 2	2 – N	lodera	te, 3	– S	ubst	antial							

TEXT BOOKS

- 1. Bolton W., "Mechatronics", Pearson Education, 6th Edition, 2015.
- 2. Ramesh S Gaonkar, "Microprocessor Architecture, Programming, and Applications with the 8085", Penram International Publishing Private Limited, 6th Edition, 2013.

REFERENCES

- 1. Bradley D.A., Dawson D., Buru N.C. and Loader A.J., "Mechatronics", Chapman and Hall, 1993.
- 2. Davis G. Alciatore and Michael B. Histand, "Introduction to Mechatronics and Measurement systems", McGraw Hill Education, 2011.
- 3. Devadas Shetty and Richard A. Kolk, "Mechatronics Systems Design", Cengage Learning, 2010.
- Nitaigour Premchand Mahalik, "Mechatronics Principles, Concepts and Applications", McGraw Hill Education, 2015.
- 5. Smaili. A and Mrad. F, "Mechatronics Integrated Technologies for Intelligent Machines", Oxford University Press, 2007.

ORA352 CONCEPTS IN MOBILE ROBOTS L T P C 3 0 0 3

COURSE OBJECTIVES

- 1. To introduce mobile robotic technology and its types in detail.
- 2. To learn the kinematics of wheeled and legged robot.
- 3. To familiarize the intelligence into the mobile robots using various sensors.
- 4. To acquaint the localization strategies and mapping technique for mobile robot.
- 5. To aware the collaborative mobile robotics in task planning, navigation and intelligence.

UNIT – I INTRODUCTION TO MOBILE ROBOTICS

Ĝ

Introduction – Locomotion of the Robots – Key Issues on Locomotion – Legged Mobile Roots –

Configurations and Stability – Wheeled Mobile Robots – Design Space and Mobility Issues – Unmanned Aerial and Underwater Vehicles

UNIT - II KINEMATICS

9

Kinematic Models – Representation of Robot – Forward Kinematics – Wheel and Robot Constraints – Degree of Mobility and Steerability – **Manoeuvrability** – Workspace – Degrees of Freedom – Path and Trajectory Considerations – Motion Controls - Holonomic Robots

UNIT - III PERCEPTION

C

Sensor for Mobile Robots – Classification and Performance Characterization – Wheel/Motor Sensors – Heading Sensors - Ground-Based Beacons - Active Ranging - Motion/Speed Sensors – Camera - Visual Appearance based Feature Extraction.

UNIT - IV LOCALIZATION

9

Localization Based Navigation Versus Programmed Solutions - Map Representation - Continuous Representations - Decomposition Strategies - Probabilistic Map-Based Localization - Landmark-Based Navigation - Globally Unique Localization - Positioning Beacon Systems - Route-Based Localization - Autonomous Map Building - Simultaneous Localization and Mapping (SLAM).

UNIT – V PLANNING, NAVIGATION AND COLLABORATIVE ROBOTS

۵

Introduction - Competences for Navigation: Planning and Reacting - Path Planning - Obstacle Avoidance - Navigation Architectures - Control Localization - Techniques for Decomposition - Case Studies - Collaborative Robots - Swarm Robots.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to:

CO1: Evaluate the appropriate mobile robots for the desired application.

CO2: Create the kinematics for given wheeled and legged robot.

CO3: Analyse the sensors for the intelligence of mobile robotics.

CO4: Create the localization strategies and mapping technique for mobile robot.

CO5: Create the collaborative mobile robotics for planning, navigation and intelligence for desired applications.

TEXTBOOK

1. Roland Siegwart and IllahR.Nourbakish, "Introduction to Autonomous Mobile Robots" MIT Press, Cambridge, 2004.

REFERENCES:

- 1. Dragomir N. Nenchev, Atsushi Konno, TeppeiTsujita, "Humanoid Robots: Modelling and Control", Butterworth-Heinemann, 2018
- 2. MohantaJagadish Chandra, "Introduction to Mobile Robots Navigation", LAP Lambert Academic Publishing, 2015.
- 3. Peter Corke, "Robotics, Vision and Control", Springer, 2017.
- 4. Ulrich Nehmzow, "Mobile Robotics: A Practical Introduction", Springer, 2003.
- 5. Xiao Qi Chen, Y.Q. Chen and J.G. Chase, "Mobile Robots State of the Art in Land, Sea, Air, and Collaborative Missions", Intec Press, 2009.
- 6. Alonzo Kelly, Mobile Robotics: Mathematics, Models, and Methods, Cambridge University Press, 2013, ISBN: 978-1107031159.

MV3501

MARINE PROPULSION

LTPC 3003

COOURSE OBJECTIVES:

- 1. To impart knowledge on basics of propulsion system and ship dynamic movements
- 2. To educate them on basic layout and propulsion equipment's
- 3. To impart basic knowledge on performance of the ship
- 4. To impart basic knowledge on Ship propeller and its types
- 5. To impart knowledge on ship rudder and its types

UNIT 1 BASICS SHIP PROPULSION SYSTEM AND EQUIPMENTS

9

law of floatation - Basics principle of propulsion- Earlier methods of propulsion- ship propulsion machinery- boiler, Marine steam engine, diesel engine, ship power transmission system, ship dynamic structure, Marine propulsion equipment - shaft tunnel, Intermediate shaft and bearing, stern tube, stern tube sealing etc. degree of freedom, Modern propelling methods- water jet propulsion , screw propulsion.

UNIT 2 SHIPS MOVEMENTS AND SHIP STABILIZATION

9

Thrust augmented devices, Ship hull, modern ship propulsion design, bow thruster – Advantages, various methods to stabilize the ship- passive and active stabilizer, fin stabilizer, bilge keel - stabilizing and securing ship in port- effect of tides on ship – effect of river water and sea water sailing vessel, Load line and load line of marking- draught markings.

UNIT 3 SHIPS SPEED AND ITS PERFORMANCE

9

Ship propulsion factors, factors affecting ships speed, various velocities of ship, hull drag, effects of fouling on ships hull, ship wake, relation between powers, Fuel consumption of ship, cavitations - effects of cavitation's, ship turning radius.

UNIT 4 BASICS OF PROPELLER

9

Propeller dimension, Propeller and its types – fixed propeller, control pitch propeller, kort nozzle, ducted propeller, voith schneider, Parts of propeller, 3 blade - 5 blade - 6 blade propellers and its advantages, propeller boss hub, crown nut, propeller skew, pitch of propeller - Thrust creation by propeller. Propeller Material – Propeller balancing- static and dynamic.

UNIT 5 BASICS OF RUDDER

9

TOTAL: 45 PERIODS

Rudder dimension, Area of rudder and its design, Rudder arrangements, Rudder fittings-Rudder pintle - Rudder types- Balanced rudder, semi balanced rudder, Spade rudder, merits and demerits of various types of rudders, Propeller and rudder interaction, Rudder stopper, movement of rudders, Basic construction of Rudder

COURSE OUTCOMES:

Upon successful completion of the course, students should be able to:

CO1: Explain the basics of propulsion system and ship dynamic movements

CO2: Familiarize with various components assisting ship stabilization.

CO3: Demonstrate the performance of the ship.

CO4: Classify the Propeller and its types, Materials etc.

CO5: Categories the Rudder and its types, design criteria of rudder.

TEXT BOOKS:

- 1. GP. Ghose, "Basic Ship propulsion",2015
- 2. E.A. Stokoe "Reeds Ship construction for marine engineers", Vol. 5,2010
- 3. E.A. Stokoe, "Reeds Naval architecture for the marine engineers",4th Edition,2009

REFERENCES BOOKS:

- 1. DJ Eyers and GJ Bruse, "Ship Construction", 7th Edition, 2006.
- 2. KJ Rawson and EC Tupper, "Basic Ship theory I" Vol. 1,5th Edition,2001.

MAPPING OF COS AND POS:

С							PO							PSO				
0	PO	Р	Р	Р	Р	Р	Р	Р	Р	PO	РО	PO	PS	PS	PS	PS		
	1	O2	O3	O4	O5	O6	07	O8	O9	10	11	12	O1	O2	О3	O4		
1	1	1	1	1	1						1	1		1		1		
2	1	1	1											1		1		
3	1			1	1				1	1	1		1	1		1		
4	1		1	1										1		1		
5	1		1	1										1		1		
Av	5/5	2/2	4/4	4/4	2/2				1/1	1/1	2/2	1/1	1/1	5/5		5/5		
g	=1	=1	=1	=1	=1				=1	=1	=1	=1	=1	=1		=1		

OMV351

MARINE MERCHANT VESSELS

LT P C 3 0 0 3

OBJECTIVES:

At the end of the course, students are expected to acquire

- 1. Knowledge on basics of Hydrostatics
- 2. Familiarization on types of merchant ships
- 3. Knowledge on Shipbuilding Materials
- 4. Knowledge on marine propeller and rudder
- 5. Awareness on governing bodies in shipping industry

UNIT I INTRODUCTION TO HYDROSTATICS

q

Archimedes Principle- Laws of floatation— Meta centre — stability of floating and submerged bodies- Density, relative density - Displacement —Pressure —centre of pressure.

UNIT II TYPES OF SHIP

10

TOTAL: 45 PERIODS

General cargo ship - Refrigerated cargo ships - Container ships - Roll-on Roll-off ships - Oil tankers- Bulk carriers - Liquefied Natural Gas carriers - Liquefied Petroleum Gas carriers - Chemical tankers - Passenger ships

UNIT III SHIPBUILDING MATERIALS

9

Types of Steels used in Shipbuilding - High tensile steels, Corrosion resistant steels, Steel sandwich panels, Steel castings, Steel forgings - Other shipbuilding materials, Aluminium alloys, Aluminium alloys andwich panels, Fire protection especially for Aluminium Alloys, Fiber Reinforced Composites

UNIT IV MARINE PROPELLER AND RUDDER

8

Types of rudder, construction of Rudder-Types of Propeller, Propeller material-Cavitations and its effects on propeller

UNIT V GOVERNING BODIES FOR SHIPPING INDUSTRY

9

Role of **IMO** (International Maritime Organization), **SOLAS** (International Convention for the Safety of Life at Sea), **MARPOL** (International Convention for the Prevention of Pollution from Ships), **MLC** (Maritime Labour Convention), **STCW 2010** (International Convention on Standards of Training, Certification and Watch keeping for Seafarers), Classification societies Administration authorities

OUTCOMES:

Upon completion of this course, students would

- 1. Acquire Knowledge on floatation of ships
- 2. Acquire Knowledge on features of various ships
- 3. Acquire Knowledge of Shipbuilding Materials
- 4. Acquire Knowledge to identify the different types of marine propeller and rudder
- 5. Understand the Roles and responsibilities of governing bodies

TEXT BOOKS:

- 1. D.J.Eyres, "Ship Constructions", Seventh Edition, Butter Worth Heinemann Publishing, USA,2015
- 2. Dr.DA Taylor, "Merchant Ship Naval Architecture" I. Mar EST publications, 2006
- 3. EA Stokoe, E.A, "Naval Architecture for Marine Engineers", Vol.4, Reeds Publications.2000

REFERENCES:

- 1. Kemp & Young "Ship Construction Sketches & Notes", Butter Worth Heinemann Publishing, USA, 2011
- 2. MARPOL Consolidated Edition, Bhandakar Publications, 2018
- 3. SOLAS Consolidated Edition, Bhandakar Publications, 2016

OMV352

ELEMENTS OF MARINE ENGINEERING

LTPC 3003

OBJECTIVES:

At the end of the course, students are expected to

- 1. Understand the role of Marine machinery systems
- 2. Be familiar with Marine propulsion machinery system
- 3. Acquaint with Marine Auxiliary machinery system
- 4. Have acquired basics of Marine Auxiliary boiler system
- 5. Be aware of ship propellers and steering system

UNIT I ELEMENTARY KNOWLEDGE ON MARINE MACHINERY SYSTEMS

a

Marine Engineering Terminologies, Parts of Ship, Introduction to Machinery systems on board ships – Propulsion Machinery system, Electricity Generator system, Steering gear system, Air compressors & Air reservoirs, Fuel oil and Lubricating Oil Purifiers, Marine Boiler systems

UNIT II MARINE PROPULSION MACHINERY SYSTEM

9

Two stroke Large Marine slow speed Diesel Engine – General Construction, Basic knowledge of Air starting and reversing mechanism, Cylinder lubrication oil system, Main lubricating oil system and cooling water system

UNIT III MARINE AUXILIARY MACHINERY SYSTEM

9

Four stroke medium speed Diesel engine – General Construction, Inline, V-type arrangement of engine, Difference between slow speed and medium speed engines – advantages, limitations and applications

UNIT IV MARINE BOILER SYSTEM

9

Types of Boiler – Difference between Water tube boiler and Fire tube boiler, Need for boiler on board ships, Uses of steam, Advantages of using steam as working medium, Boiler mountings and accessories – importance of mountings, need for accessories

UNIT V SHIP PROPELLERS AND STEERING MECHANISM

9

Importance of Propellor and Steering gear, Types of propellers - Fixed pitch propellers, Controllable pitch propellers, Water jet propellers, Steering gear systems - 2-Ram and 4 Ram steering gear, Electric steering gear

TOTAL: 45 PERIODS

OUTCOMES:

At the end of the course, students should able to,

- 1. Distinguish the role of various marine machinery systems
- 2. Relate the components of marine propulsion machinery system
- 3. Explain the importance of marine auxiliary machinery system
- 4. Acquire knowledge of marine boiler system
- 5. Understand the importance of ship propellors and steering system

TEXT BOOKS:

- 1. Taylor, "Introduction to Marine engineering", Revised Second Edition, Butterworth Heinemann, London, 2011
- 2. J.K.Dhar, "Basic Marine Engineering", Tenth Edition, G-Maritime Publications, Mumbai, 2011
- 3. K.Ramaraj, "Text book on Marine Engineering", Eswar Press, Chennai, 2018

REFERENCES:

- Alan L.Rowen, "Introduction to Practical Marine Engineering, Volume 1&2, The Institute of Marine Engineers (India), Mumbai, 2006
- 2. A.S.Tambwekar, "Naval Architecture and Ship Construction", The Institute of Marine Engineers (India), Mumbai, 2015

COURSE OBJECTIVES:

- 1. To understand the basics of drone concepts
- 2. To learn and understand the fundaments of design, fabrication and programming of drone
- 3. To impart the knowledge of an flying and operation of drone
- 4. To know about the various applications of drone
- 5. To understand the safety risks and guidelines of fly safely

UNIT – I INTRODUCTION TO DRONE TECHNOLOGY

9

Drone Concept - Vocabulary Terminology- History of drone - Types of current generation of drones based on their method of propulsion- Drone technology impact on the businesses- Drone business through entrepreneurship- Opportunities/applications for entrepreneurship and employability

UNIT – II DRONE DESIGN, FABRICATION AND PROGRAMMING

9

Classifications of the UAV -Overview of the main drone parts- Technical characteristics of the parts -Function of the component parts -Assembling a drone- The energy sources- Level of autonomy- Drones configurations -The methods of programming drone- Download program - Install program on computer- Running Programs- Multi rotor stabilization- Flight modes -Wi-Fi connection.

UNIT – III DRONE FLYING AND OPERATION

9

Concept of operation for drone -Flight modes- Operate a small drone in a controlled environment- Drone controls Flight operations -management tool -Sensors-Onboard storage capacity -Removable storage devices- Linked mobile devices and applications

UNIT – IV DRONE COMMERCIAL APPLICATIONS

q

Choosing a drone based on the application -Drones in the insurance sector- Drones in delivering mail, parcels and other cargo- Drones in agriculture- Drones in inspection of transmission lines and power distribution -Drones in filming and panoramic picturing

UNIT – V FUTURE DRONES AND SAFETY

۵

TOTAL: 45 PERIODS

The safety risks- Guidelines to fly safely -Specific aviation regulation and standardization-Drone license- Miniaturization of drones- Increasing autonomy of drones -The use of drones in swarms

COURSE OUTCOMES

Upon successful completion of the course, students should be able to:

CO1: Know about a various type of drone technology, drone fabrication and programming.

CO2: Execute the suitable operating procedures for functioning a drone

CO3: Select appropriate sensors and actuators for Drones

CO4: Develop a drone mechanism for specific applications

CO5: Createthe programs for various drones

CO-PO MAPPING:

	Mapping of COs with POs and PSOs														
COs/Pos&P							POs	;					PSOs		
SOs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	1	2	3	1	3	2						1	2	1	3
CO2	1	2	3	1	3	2						1	2	1	3
CO3	1	2	3	1	3	2						1	2	1	3
CO4	1	2	3	1	3	2						1	2	1	3
CO5	1	2	3	1	3	2						1	2	1	3
CO/PO &	1	2	3	1	3	2						1	2	1	3
PSO															
Average															

TEXT BOOKS

- 1. Daniel Tal and John Altschuld, "Drone Technology in Architecture, Engineering and Construction: A Strategic Guide to Unmanned Aerial Vehicle Operation and Implementation", 2021 John Wiley & Sons, Inc.
- 2. Terry Kilby and Belinda Kilby, "Make:Getting Started with Drones ",Maker Media, Inc, 2016

REFERENCES

- 1. John Baichtal, "Building Your Own Drones: A Beginners' Guide to Drones, UAVs, and ROVs", Que Publishing, 2016
- 2. Zavrsnik, "Drones and Unmanned Aerial Systems: Legal and Social Implications for Security and Surveillance", Springer, 2018.

OGI352

GEOGRAPHIC INFORMATION SYSTEM

LTPC 3003

OBJECTIVES:

To impart the knowledge on basic components, data preparation and implementation of Geographical Information System.

UNIT I FUNDAMENTALS OF GIS

9

Introduction to GIS - Basic spatial concepts - Coordinate Systems - GIS and Information Systems - Definitions - History of GIS - Components of a GIS - Hardware, Software, Data, People, Methods - Proprietary and open source Software - Types of data - Spatial, Attribute data- types of attributes - scales/ levels of measurements.

UNIT II SPATIAL DATA MODELS

ç

Database Structures – Relational, Object Oriented – Entities – ER diagram - data models - conceptual, logical and physical models - spatial data models – Raster Data Structures – Raster Data Compression - Vector Data Structures - Raster vs Vector Models- TIN and GRID data models.

UNIT III DATA INPUT AND TOPOLOGY

9

Scanner - Raster Data Input – Raster Data File Formats – Georeferencing – Vector Data Input – Digitizer – Datum Projection and reprojection - Coordinate Transformation – Topology - Adjacency, connectivity and containment – Topological Consistency – Non topological file formats - Attribute Data linking – Linking External Databases – GPS Data Integration

UNIT IV DATA QUALITY AND STANDARDS

9

Data quality - Basic aspects - completeness, logical consistency, positional accuracy, temporal accuracy, thematic accuracy and lineage - Metadata - GIS Standards - Interoperability - OGC - Spatial Data Infrastructure

UNIT V DATA MANAGEMENT AND OUTPUT

9

Import/Export – Data Management functions- Raster to Vector and Vector to Raster Conversion - Data Output - Map Compilation – Chart/Graphs – Multimedia – Enterprise Vs. Desktop GIS-distributed GIS.

TOTAL:45 PERIODS

COURSE OUTCOMES:

- •On completion of the course, the student is expected to
- **CO1** Have basic idea about the fundamentals of GIS.
- CO2 Understand the types of data models.
- CO3 Get knowledge about data input and topology
- CO4 Gain knowledge on data quality and standards
- CO5 Understand data management functions and data output

TEXTBOOKS:

- 1. Kang Tsung Chang, Introduction to Geographic Information Systems, McGraw Hill Publishing, 2nd Edition, 2011.
- 2. Ian Heywood, Sarah Cornelius, Steve Carver, Srinivasa Raju, "An Introduction Geographical Information Systems, Pearson Education, 2nd Edition, 2007.

REFERENCES:

1. Lo. C. P., Albert K.W. Yeung, Concepts and Techniques of Geographic Information Systems, Prentice-Hall India Publishers, 2006

CO - PO - PSO MAPPING: GEOGRAPHIC INFORMATION SYSTEM

			Cou	rse Out	come		
РО	Graduate Attribute	CO1	CO2	CO3	CO4	CO5	Average
PO1	Engineering Knowledge	3	3	3	3	3	3
PO2	Problem Analysis				3	3	3
PO3	Design/Development of Solutions			3	3	3	3
PO4	Conduct Investigations of Complex Problems			3	3	3	3
PO5	Modern Tool Usage		3	8	3	3	3
PO6	The Engineer and Society						
PO 7	Environment and Sustainability						
PO 8	Ethics						
PO 9	Individual and Team Work		D				
PO 10	Communication			1 T			
PO 11	Project Management and Finance	777		/			
PO 12	Life-long Learning						
PSO 1	Knowledge of Geoinformatics discipline	3	3	3	3	3	3
PSO 2	Critical analysis of Geoinformatics Engineering problems and innovations	3	3	3	3	3	3
PSO 3	Conceptualization and evaluation of Design solutions	3	3	3	3	3	3

OAI352

AGRICULTURE ENTREPRENEURSHIP DEVELOPMENT

LTPC 3 0 0 3

OBJECTIVES

- To introduce the importance of Agri-business management, its characteristics and principles
- To impart knowledge on the functional areas of Agri-business like Marketing management, Product pricing methods and Market potential assessment.

UNIT I ENTREPRENEURIAL ENVIRONMENT IN INDIAN CONTEXT

Entrepreneur Development(ED): Concept of entrepreneur and entrepreneurship assessing overall business environment in Indian economy- Entrepreneurial and managerial characteristics- Entrepreneurship development programmers (EDP)-Generation incubation and commercialization of ideas and innovations- Motivation and entrepreneurship development-Globalization and the emerging business entrepreneurial environment.

UNIT II AGRIPRNEURSHIP IN GLOBAL ARENA: LEGAL PERSPECTIVE 9
Importance of agribusiness in Indian economy - International trade-WTO agreementsProvisions related to agreements in agricultural and food commodities - Agreements on
Agriculture (AOA)- Domestic supply, market access, export subsidies agreements on sanitary
and phyto-sanitary (SPS) measures, Trade related intellectual property rights (TRIPS).

UNIT III ENTREPRENEURSHIP MANAGEMENT: FINANCIAL PERSPECTIVE 9

Entrepreneurship - Essence of managerial Knowledge -Management functions- Planning-organizing-Directing-Motivation-ordering-leading-supervision- communication and control-Understanding Financial Aspects of Business - Importance of financial statements-liquidity ratios-leverage ratios, coverage ratios-turnover ratios-Profitability ratios. Agro-based industries-Project-Project cycle-Project appraisal and evaluation techniques-undiscounted measures-

Payback period-proceeds per rupee of outlay, Discounted measures-Net Present Value (NPV)-Benefit-Cost Ratio(BCR)-Internal Rate of Return(IRR)-Net benefit investment ratio(N/K ratio)-sensitivity analysis.

UNIT IV ENTREPRENEURIAL OPPORTUNITIES: ECONOMIC GROWTH PERSPECTIVE

g

Managing an enterprise: Importance of planning, budgeting, monitoring evaluation and follow-up managing competition. Role of ED in economic development of a country- Overview of Indian social, political system and their implications for decision making by individual entrepreneurs- Economic system and its implication for decision making by individual entrepreneurs.

UNITY ENTREPRENEURIAL PROMOTION MEASURES AND GOVERNMENT SUPPORT

9

TOTAL: 45 PERIODS

Social responsibility of business. Morals and ethics in enterprise management- SWOT analysis-Government schemes and incentives for promotions of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors- Venture capital (VC), contract framing (CF) and Joint Venture (JV), public-private

partnerships (PPP) - overview of agricultural engineering industry, characteristics of Indian farm machinery industry.

COURSE OUTCOMES

1. Judge about agricultural finance, banking and cooperation

- 2. Evaluate basic concepts, principles and functions of financial management
- 3. Improve the skills on basic banking and insurance schemes available to customers
- 4. Analyze various financial data for efficient farm management
- 5. Identify the financial institutions

TEXT BOOKS

- 1. Joseph L. Massie, 1995, "Essentials of Management", prentice Hall of India Pvt limited, New Delhi
- 2. Khanka S, 1999, Entrepreneurial Development, S, Chand and Co, New Delhi
- 3. Mohanty S K, 2007, Fundamentals of Entrepreneurship, Prentice Hall India, New Delhi.

REFERENCES

- 1. Harih S B, Conner U J and Schwab G D, 1981, Management of the Farm Business, Prentice Hall Inc, New Jersey
- 2. Omri Ralins, N.1980, Introduction to Agricultural: Prentice Hall Inc, New Jersey
- 3. Gittenger Price, 1989, Economic Analysis of Agricultural project, John Hopkins University, Press, London.
- 4. Thomas W Zimmer and Norman M Scarborough, 1996, Entrepreneurship, Prentice Hall, New Jersey.
- 5. Mar J Dollinger, 1999, Entrepreneurship strategies and resources, Prentice –Hall, Upper Saddal Rover, New Jersey.

CO-PO MAPPING

PO/PS	0	CO1	CO2	CO3	CO4	CO5	Overall correlation of COs with POs
PO1	Engineering Knowledge	1	2	1	1	1	2
PO2	Problem Analysis	2	1	1	1	2	1
PO3	Design/ Development of Solutions	1	1	1	2	1	2
PO4	Conduct Investigations of Complex Problems	1	1	2	1	1	1
PO5	Modern Tool Usage	2	1	1	1	1	2
PO6	The Engineer and Society	1	2	1	2	1	1
PO7	Environment and sustainability	1	1	2	1	1	1
PO8	Ethics	1	2	1	1	1	1
PO9	Individual and team work:	1	1	1	2	1	1
PO10	Communication	1	1	1	1	2	1

PO11	Project management and finance	1	1	2	1	1	1
PO12	Life-long learning:	1	2	1	1	1	2
PSO1	To make expertise in design and engineering problem solving approach in agriculture with proper knowledge and skill	1	2	1	1	1	1
PSO2	To enhance students ability to formulate solutions to real-world problems pertaining to sustained agricultural productivity using modern technologies.	1	1	2	1	1	1
PSO3	To inculcate entrepreneurial skills through strong Industry-Institution linkage.	1	2	1	1	2	1

OEN352

BIODIVERSITY CONSERVATION

LTPC 3 0 0 3

OBJECTIVE:

The identification of different aspects of biological diversity and conservation techniques.

UNIT I INTRODUCTION

9

Concept of Species, Variation; Introduction to Major Plant Groups; Evolutionary relationships between Plant Groups; Nomenclature and History of plant taxonomy; Systems of Classification and their Application; Study of Plant Groups; Study of Identification Characters; Study of important families of Angiosperms; Plant Diversity Application.

UNIT II INTRODUCTION TO ANIMAL DIVERSITY AND TAXONOMY

Principles and Rules of Taxonomy; ICZN Rules, Animal Study Techniques; Concepts of Taxon, Categories, Holotype, Paratype, Topotype etc; Classification of Animal kingdom, Invertebrates, Vertebrates, Evolutionary relationships between Animal Groups.

UNIT III MICROBIAL DIVERSITY

9

Microbes and Earth History, Magnitude, Occurrence and Distribution. Concept of Species, Criteria for Classification, Outline Classification of Microorganisms (Bacteria, Viruses and Protozoa); Criteria for Classification and Identification of Fungi; Chemical and Biochemical Methods of Microbial Diversity Analysis

UNIT IV MEGA DIVERSITY

9

Biodiversity Hot-spots, Floristic and Faunal Regions in India and World; IUCN Red List; Factors affecting Diversity, Impact of Exotic Species and Human Disturbance on Diversity, Dispersal, Diversity-Stability Relationship; Socio- economic Issues of Biodiversity; Sustainable Utilization of Bioresources; National Movements and International Convention/Treaties on Biodiversity.

UNIT V CONSERVATIONS OF BIODIVERSITY

9

In-Situ Conservation- National parks, Wildlife sanctuaries, Biosphere reserves; Ex-situ conservation- Gene bank, Cryopreservation, Tissue culture bank; Long term captive breeding, Botanical gardens, Animal Translocation, Zoological Gardens; Concept of Keystone Species, Endangered Species, Threatened Species, Rare Species, Extinct Species

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. A textbook of Botany: Angiosperms- Taxonomy, Anatomy, Economic Botany & Embryology. S. Chand, Limited, Pandey, B. P. January 2001
- 2. Principles of Systematic Zoology, Mcgraw-Hill College, Ashlock, P.D., Latest Edition.
- 3. Microbiology, MacGraw Hill Companies Inc, Prescott, L.M., Harley, J.P., and Klein D.A. (2022).
- 4. Microbiology, Pearson Publisher, Gerard J. Tortora, Berdell R. Funke, Christine L.Case,

REFERENCES:

- 1. Ecological Census Technique: A Handbook, Cambridge University Press, Sutherland, W.
- 2. Encyclopedia of Biodiversity, Academic Press, Simonson Asher Levin.

OUTCOMES

Upon successful completion of this course, students will:

CO1: An insight into the structure and function of diversity for ecosystem stability.

CO2: Understand the concept of animal diversity and taxonomy

CO3: Understand socio-economic issues pertaining to biodiversity

CO4: An understanding of biodiversity in community resource management.

CO5: Student can apply fundamental knowledge of biodiversity conservation to solve problems associated with infrastructure development.

CO's-PO's & PSO's MAPPING

00 3-1 0 3 & 1 00 3 MAI 1 MO															
	PO's		PSO's												
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		2						2		2			2	2	
2		2		2	2	2							3	2	
3				2		2							3	2	3
4	3	2			2	11.1		2	2	2	2		3	2	3
5		2	3	2	1	9.	1		11.			1		2	
Avg.	3	2	3	2	2	2	1	2	2	2	2	1	3	2	3

1.low, 2-medium, 3-high, '-"- no correlation

Note: The average value of this course to be used for program articulation matrix.

OEE353

INTRODUCTION TO CONTROL SYSTEMS

LTPC 3003

OBJECTIVES

- To impart knowledge on various representations of systems.
- To familiarize time response analysis of LTI systems and steady state error.
- To analyze the frequency responses and stability of the systems
- To analyze the stability of linear systems in frequency domain and time domain
- To develop linear models mainly state variable model and transfer function model

•

UNIT I MATHEMATICAL MODELS OF PHYSICALSYSTEMS

9

Definition & classification of system – terminology & structure of feedback control theory – Analogous systems - Physical system representation by Differential equations – Block diagram reduction–Signal flow graphs.

UNIT II TIME RESPONSE ANALYSIS & ROOTLOCUSTECHNIQUE

9

Standard test signals – Steady state error & error constants – Time Response of I and II order system—Root locus—Rules for sketching root loci.

UNIT III FREQUENCY RESPONSE ANALYSIS

9

Correlation between Time & Frequency response – Polar plots – Bode Plots – Determination of Transfer Function from Bode plot.

UNIT IV STABILITY CONCEPTS & ANALYSIS

9

Concept of stability – Necessary condition – RH criterion – Relative stability – Nyquist stability criterion — Stability from Bode plot — Relative stability from Nyquist & Bode — Closed loop frequency response.

UNITY STATE VARIABLE ANALYSIS

g

Concept of state – State Variable & State Model – State models for linear & continuous time systems–Solution of state & output equation–controllability & observability.

TOTAL: 45 PERIODS

OUTCOMES:

Ability to

CO1: Design the basic mathematical model of physical System.

CO2: Analyze the time response analysis and techniques.

CO3: Analyze the transfer function from different plots.

CO4: Apply the stability concept in various criterion.

CO5: Assess the state models for linear and continuous Systems.

TEXTBOOKS

- 1. <u>Farid Golnarghi</u>, <u>Benjamin C. Kuo</u>, Automatic Control Systems Paper back McGraw Hill Education, 2018.
- 2. Katsuhiko Ogata, 'Modern Control Engineering', Pearson, 5th Edition2015.
- 3. J. Nagrath and M. Gopal, Control Systems Engineering (Multi Colour Edition), New Age International, 2018.

REFERENCES

- 1. Richard C. Dorf and Robert H. Bishop, Modern Control Systems, Pearson Education, 2010.
- 2. Control System Dynamics" by Robert Clark, Cambridge University Press, 1996 USA.
- 3. John J. D'Azzo, Constantine H. Houpis and Stuart N. Sheldon, Linear Control System AnalysisandDesign, 5th Edition, CRC PRESS, 2003.
- 4. S. Palani, Control System Engineering, McGraw-Hill Education Private Limited, 2009.
- 5. Yaduvir Singh and S.Janardhanan, Modern Control, Cengage Learning, First Impression2010.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CO1	3	3	3	2	2							2	3	3	3
CO2	3	3	2	3	1								3	3	3
CO3	3	3	3	2	2								3	3	3
CO4	3	3	3	2	2							2	3	3	3
CO5	3	3	3	1	1							1	3	3	3
													3	3	3

OEI354 INTRODUCTION TO INDUSTRIAL AUTOMATION SYSTEMS LT P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To educate on design of signal conditioning circuits for various applications.
- 2. To Introduce signal transmission techniques and their design.
- 3. Study of components used in data acquisition systems interface techniques
- 4. To educate on the components used in distributed control systems
- 5. To introduce the communication buses used in automation industries.

UNIT I INTRODUCTION

Automation overview, Requirement of automation systems, Architecture of Industrial Automation system, Introduction of PLC and supervisory control and data acquisition (SCADA). Industrial bus systems: Modbus & Profibus

UNIT II AUTOMATION COMPONENTS

9

Sensors for temperature, pressure, force, displacement, speed, flow, level, humidity and pH measurement. Actuators, process control valves, power electronics devices DIAC, TRIAC, power MOSFET and IGBT. Introduction of DC and AC servo drives for motion control.

UNIT III COMPUTER AIDED MEASUREMENT AND CONTROL SYSTEMS

Role of computers in measurement and control, Elements of computer aided measurement and control, man-machine interface, computer aided process control hardware, process related interfaces, Communication and networking, Industrial communication systems, Data transfer techniques, Computer aided process control software, Computer based data acquisition system, Internet of things (IoT) for plant automation.

UNIT IV PROGRAMMABLE LOGIC CONTROLLERS

g

Programmable controllers, Programmable logic controllers, Analog digital input and output modules, PLC programming, Ladder diagram, Sequential flow chart, PLC Communication and networking, PLC selection, PLC Installation, Advantage of using PLC for Industrial automation, Application of PLC to process control industries.

UNIT V DISTRIBUTED CONTROL SYSTEM

۵

Overview of DCS, DCS software configuration, DCS communication, DCS Supervisory Computer Tasks, DCS integration with PLC and Computers, Features of DCS, Advantages of DCS.

TOTAL:45 PERIODS

SKILL DEVELOPMENT ACTIVITIES (Group Seminar/Mini Project/Assignment/Content Preparation / Quiz/ Surprise Test / Solving GATE questions/ etc) 5

- 1. Market survey of the recent PLCs and comparison of their features.
- 2. Summarize the PLC standards
- 3. Familiarization of any one programming language (Ladder diagram/ Sequential Function Chart/ Function Block Diagram/ Equivalent open source software)
- 4. Market survey of Industrial Data Networks.

COURSE OUTCOMES:

Students able to

- **CO1** Design a signal conditioning circuits for various application (L3).
- CO2 Acquire a detail knowledge on data acquisition system interface and DCS system (L2).
- CO3 Understand the basics and Importance of communication buses in applied automation Engineering (L2).
- CO4 Ability to design PLC Programmes by Applying Timer/Counter and Arithmetic and Logic Instructions Studied for Ladder Logic and Function Block.(L3)
- **CO5** Able to develop a PLC logic for a specific application on real world problem. (L5)

TEXT BOOKS:

- 1. S.K.Singh, "Industrial Instrumentation", Tata Mcgraw Hill, 2nd edition companies,2003.
- 2. C D Johnson, "Process Control Instrumentation Technology", Prentice Hall India,8th Edition, 2006.
- E.A.Parr, Newnes ,NewDelhi, "Industrial Control Handbook", 3rd Edition, 2000.

REFERENCES:

- 1. John W. Webb and Ronald A. Reis, "Programmable Logic Controllers: Principles and Applications", 5th Edition, Prentice Hall Inc., New Jersey, 2003.
- 2. Frank D. Petruzella, "Programmable Logic Controllers", 5th Edition, McGraw- Hill, New York, 2016.
- 3. Krishna Kant, "Computer Based Industrial Control", 2nd Edition, Prentice Hall, New Delhi, 2011.
- 4. Gary Dunning, Thomson Delmar, "Programmable Logic Controller", CeneageLearning, 3 rd Edition, 2005.

List of Open Source Software/ Learning website:

- 1. https://archive.nptel.ac.in/courses/108/105/108105062/
- 2. https://nptel.ac.in/courses/108105063
- 3. https://www.electrical4u.com/industrial-automation/
- 4. https://realpars.com/what-is-industrial-automation/
- 5. https://automationforum.co/what-is-industrial-automation-2/

CO's-PO's & PSO's MAPPING

			PO	's									PSO's		
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
CO1	3	2	2	2	1	1	-	1	-	1	-	1	1	-	1
CO2	3	`1	1	-	1	-	-	1	-	1	-	-	1	-	1
CO3	3	-	1	-	1	-	-	1	-	1	-	-	1	-	1
CO4	3	3	3	3	1			1		1			1		1
CO5	3	3	3	3	1	1		1		1			1		1
AVg.	3	2.25	2	2.6	1	1	-	1	-	1	-	-	1	-	1

LTPC 3003

OBJECTIVES

The course aims to

- acquaint and equip the students with different techniques of measurement of engineering properties.
- make the students understand the nature of food constituents in the design of processing equipment

UNIT I 9

Engineering properties of food materials: physical, thermal, aerodynamic, mechanical, optical and electromagnetic properties.

UNIT II 9

Drying and dehydration: Basic drying theory, heat and mass transfer in drying, drying rate curves, calculation of drying times, dryer efficiencies; classification and selection of dryers; tray, vacuum, osmotic, fluidized bed, pneumatic, rotary, tunnel, trough, bin, belt, microwave, IR, heat pump and freeze dryers; dryers for liquid: Drum or roller dryer, spray dryer and foammat dryers

UNIT III

Size reduction: Benefits, classification, determination and designation of the fineness of ground material, sieve/screen analysis, principle and mechanisms of comminution of food, Rittinger's, Kick's and Bond's equations, work index, energy utilization; Size reduction equipment: Principal types, crushers (jaw crushers, gyratory, smooth roll), hammer mills and impactors, attrition mills, buhr mill, tumbling mills, tumbling mills, ultra fine grinders, fluid jet pulverizer, colloid mill, cutting machines (slicing, dicing, shredding, pulping)

UNIT IV

Mixing: theory of solids mixing, criteria of mixer effectiveness and mixing indices, rate of mixing, theory of liquid mixing, power requirement for liquids mixing; Mixing equipment: Mixers for lo.w-or medium-viscosity liquids (paddle agitators, impeller agitators, powder-liquid contacting devices, other mixers), mixers for high viscosity liquids and pastes, mixers for dry powders and particulate solids.

UNIT V 9

Mechanical Separations: Theory, centrifugation, liquid-liquid centrifugation, liquid-solid centrifugation, clarifiers, desludging and decanting machine, Filtration: Theory of filtration, rate of filtration, pressure drop during filtration, applications, constant-rate filtration and constant-pressure filtration, derivation of equation; Filtration equipment; plate and frame filter press, rotary filters, centrifugal filters and air filters, filter aids, Membrane separation: General considerations, materials for membrane construction, ultra-filtration, microfiltration, concentration, polarization, processing variables, membrane fouling, applications of ultra-filtration in food processing, reverse osmosis, mode of operation, and applications; Membrane separation methods, demineralization by electro-dialysis, gel filtration, ion exchange, perevaporation and osmotic dehydration.

TOTAL: 45 PERIODS

COURSE OUTCOMES:

At the end of the course the students will be able to

CO1 understand the importance of food polymers

CO2 understand the effect of various methods of processing on the structure and texture of food materials

CO3 understand the interaction of food constituents with respect to thermal, electrical properties to develop new technologies for processing and preservation.

TEXTBOOKS:

- 1. R.L. Earle. 2004. Unit Operations in Food Processing. The New Zealand Intitute of Food Science & Technology, Nz. Warren L. McCabe, Julian Smith, Peter Harriott. 2004.
- 2. Unit Operations of Chemical Engineering, 7th Ed. McGraw-Hill, Inc., NY, USA. Christie

- John Geankoplis. 2003.
- 3. Transport Processes and Separation Process Principles (Includes Unit Operations), 4th Ed. Prentice-Hall, NY, USA.
- 4. George D. Saravacos and Athanasios E. Kostaropoulos. 2002. Handbook of Food Processing Equipment. Springer Science+Business Media, New York, USA.
- 5. J. F. Richardson, J. H. Harker and J. R. Backhurst. 2002. Coulson & Richardson's Chemical Engineering, Vol. 2, Particle Technology and Separation Processes, 5th Ed.

OFD355 FOOD SAFETY AND QUALITY REGULATIONS

LTPC 3003

TOTAL: 45 PERIODS

OBJECTIVES:

- To characterize different type of food hazards, physical, chemical and biological in the industry and food service establishments
- To help become skilled in systems for food safety surveillance
- To be aware of the regulatory and statutory bodies in India and the world
- To ensure processed food meets global standards

UNIT I

Introduction to food safety and security: Hygienic design of food plants and equipments, Food Contaminants (Microbial, Chemical, Physical), Food Adulteration (Common adulterants), Food Additives (functional role, safety issues), Food Packaging & labeling. Sanitation in warehousing, storage, shipping, receiving, containers and packaging materials. Control of rats, rodents, mice, birds, insects and microbes. Cleaning and Disinfection, ISO 22000 – Importance and Implementation

UNIT II

Food quality: Various Quality attributes of food, Instrumental, chemical and microbial Quality control. Sensory evaluation of food and statistical analysis. Water quality and other utilities.

UNIT III 9

Critical Quality control point in different stages of production including raw materials and processing materials. Food Quality and Quality control including the HACCP system. Food inspection and Food Law, Risk assessment – microbial risk assessment, dose response and exposure response modelling, risk management, implementation of food surveillance system to monitor food safety, risk communication

UNIT IV 9

Indian and global regulations: FAO in India, Technical Cooperation programmes, Bio-security in Food and Agriculture, World Health Organization (WHO), World Animal Health Organization (OIE), International Plant Protection Convention (IPPC)

UNIT V 9

Codex Alimentarius Commission - Codex India - Role of Codex Contact point, National Codex contact point (NCCP), National Codex Committee of India - ToR, Functions, Shadow Committees etc.

COURSE OUTCOMES:

CO1 Thorough Knowledge of food hazards, physical, chemical and biological in the industry and food service establishments

CO2 Awareness on regulatory and statutory bodies in India and the world

REFERENCES:

- 1. Handbook of food toxicology by S. S. Deshpande, 2002
- 2. The food safety information handbook by Cynthia A. Robert, 2009
- 3. Nutritional and safety aspects of food processing by Tannenbaum SR, Marcel Dekker Inc., New York 1979
- 4. Microbiological safety of Food by Hobbs BC, 1973

5. Food Safety Handbook by Ronald H. Schmidt, Gary E. Rodrick, A John Wiley & Sons Publication, 2003

OCH353 ENERGY TECHNOLOGY

LTPC 3003

UNIT I INTRODUCTION

8

Units of energy, conversion factors, general classification of energy, world energy resources and energy consumption, Indian energy resources and energy consumption, energy crisis, energy alternatives, Renewable and non-renewable energy sources and their availability. Prospects of Renewable energy sources

UNIT II CONVENTIONAL ENERGY

8

Conventional energy resources, Thermal, hydel and nuclear reactors, thermal, hydel and nuclear power plants, efficiency, merits and demerits of the above power plants, combustion processes, fluidized bed combustion.

UNIT III NON-CONVENTIONAL ENERGY

10

Solar energy, solar thermal systems, flat plate collectors, focusing collectors, solar water heating, solar cooling, solar distillation, solar refrigeration, solar dryers, solar pond, solar thermal power generation, solar energy application in India, energy plantations. Wind energy, types of windmills, types of wind rotors, Darrieus rotor and Gravian rotor, wind electric power generation, wind power in India, economics of wind farm, ocean wave energy conversion, ocean thermal energy conversion, tidal energy conversion, geothermal energy.

UNIT IV BIOMASS ENERGY

10

Biomass energy resources, thermo-chemical and biochemical methods of biomass conversion, combustion, gasification, pyrolysis, biogas production, ethanol, fuel cells, alkaline fuel cell, phosphoric acid fuel cell, molten carbonate fuel cell, solid oxide fuel cell, solid polymer electrolyte fuel cell, magneto hydrodynamic power generation, energy storage routes like thermal energy storage, chemical, mechanical storage and electrical storage.

UNIT V ENERGY CONSERVATION

9

TOTAL: 45 PERIODS

Energy conservation in chemical process plants, energy audit, energy saving in heat exchangers, distillation columns, dryers, ovens and furnaces and boilers, steam economy in chemical plants, energy conservation.

OUTCOMES:

On completion of the course, the students will be able to

CO1: Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.

CO2: Students will excel as professionals in the various fields of energy engineering

CO3: Compare different renewable energy technologies and choose the most appropriate based on local conditions.

CO4: Explain the technological basis for harnessing renewable energy sources.

CO5: Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level.

TEXT BOOKS

- 1. Rao, S. and Parulekar, B.B., Energy Technology, Khanna Publishers, 2005.
- 2. Rai, G.D., Non-conventional Energy Sources, Khanna Publishers, New Delhi, 1984.
- 3. Bansal, N.K., Kleeman, M. and Meliss, M., Renewable Energy Sources and Conversion Technology. Tata McGraw Hill. 1990.
- 4. Nagpal, G.R., Power Plant Engineering, Khanna Publishers, 2008.

REFERENCES

- 1. Nejat Vezirog, Alternate Energy Sources, IT, McGraw Hill, New York.
- 2. El. Wakil, Power Plant Technology, Tata McGraw Hill, New York, 2002.

3. Sukhatme. S.P., Solar Enery - Thermal Collection and Storage, Tata McGraw hill, New Delhi, 1981.

Course articulation matrix

Cour				Prog	ram (Outco	mes									
se Outc ome s	Statements	P 0 1	PO 2	PO 3	PO 4	P 05	PO 6	P O 7	PO 8	P O 9	P O 10	PO 11	P O 12	PS O1	P S O 2	P S O 3
CO1	Students will be able to describe the fundamentals and main characteristics of renewable energy sources and their differences compared to fossil fuels.	2	3	2	3	3	-	-	-	1	1	-	3	1	1	3
CO2	Students will excel as professionals in the various fields of energy engineering	2	3	1	3	3	-	-	-	1	1	-	3	2	1	3
CO3	Compare different renewable energy technologies and choose the most appropriate based on local conditions.	2	2	2	3	3	1	1	j	1	1	-	3	2	1	3
CO4	Explain the technological basis for harnessing renewable energy sources.	2	2	1	3	3	R.	1	1	1	-	1	3	1	1	3
CO5	Identify and critically evaluate current developments and emerging trends within the field of renewable energy technologies and to develop in-depth technical understanding of energy problems at an advanced level	2	2	1	3	3	1	1	1	1		1	3	2	1	3
	OVERALL CO	3	3	2	2	1	1	1	1	3	2	1	3			

^{1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

OCH354 SURFACE SCIENCE L T P C 3 0 0 3

OBJECTIVE:

 To enable the students to analyze properties of a surfaces and correlate them to structure, chemistry, and physics and surface modification technique.

UNIT I SURFACE STRUCTURE AND EXPERIMENTAL PROBES

Relevance of surface science to Chemical and Electrochemical Engineering, Heterogeneous Catalysis and Nanoscience; Surface structure and reconstructions, absorbate structure, Band and Vibrational structure, Importance of UHV techniques, Electronic probes and molecular beams, Scanning probes and diffraction, Qualitative introduction to electronic and vibrational spectroscopy

UNIT II ADSORPTION, DYNAMICS, THERMODYNAMICS AND KINETICS AT SURFACES

Interactions at the surface, Physisorption, Chemisorption, Diffusion, dynamics and reactions of atoms/molecules on surfaces, Generic reaction mechanism on surfaces, Adsorption isotherms, Kinetics of adsorption, Use of temperature desorption methods

UNIT III LIQUID INTERFACES

9

Structure and Thermodynamics of liquid-solid interface, Self-assembled monolayers, Electrified interfaces, Charge transfer at the liquid-solid interfaces, Photoelectrochemical processes, Gratzel cells

UNIT IV HETEROGENEOUS CATALYSIS

9

Characterization of heterogeneous catalytic processes, Microscopic kinetics to catalysis, Overview of important heterogeneous catalytic processes: Haber-Bosch, Fishcher-Tropsch and Automotive catalysis, Role of promoters and poisons, Bimetallic surfaces, surface functionalization and clusters in catalysis, Role of Sabatier principle in catalyst design, Rate oscillations and spatiotemporal pattern formation

UNIT V EPITAXIAL GROWTH AND NANO SURFACE-STRUCTURES 9

Origin of surface forces, Role of stress and strain in epitaxial growth, Energetic and growth modes, Nucleation theory, Nonequilibrium growth modes, MBE, CVD and ablation techniques, Catalytic growth of nanotubes, Etching of surfaces, Formation of nanopillars and nanorods and its application in photoelectrochemical processes, Polymer surfaces and biointerfaces.

TOTAL: 45 PERIODS

OUTCOME:

 Upon completion of this course, the students can understand, predict and design surface properties based on surface structure. Students would understand the physics and chemistry behind surface phenomena

TEXT BOOK:

1. K. W. Kolasinski, "Surface Science: Foundations of catalysis and nanoscience" II Edition, John Wiley & Sons, New York, 2008.

REFERENCE:

1. Gabor A. Somorjai and Yimin Li "Introduction to Surface Chemistry and catalysis", II Edition John Wiley & Sons, New York, 2010.

OTT354

BASICS OF DYEING AND PRINTING

LTPC

3003

OBJECTIVE:

 To enable the students to learn about the basics of Pretreatment, dyeing, printing and machinery in textile processing.

UNIT I INTRODUCTION

9

Impurities present in different fibres, Inspection of grey goods and lot preparation. Shearing,

UNIT II PRE TREATMENT

9

Desizing-Objective of Desizing- types of Desizing- Objective of Scouring- Mechanism of Scouring- Degumming of Silk, Scouring of wool - Bio Scouring. Bleaching -Objective of Bleaching: Bleaching mechanism of Hydrogen Peroxide, Hypo chlorites. Objective of Mercerizing - Physical and Chemical changes of Mercerizing.

UNIT III DYEING

ç

Dye - Affinity, Substantively, Reactivity, Exhaustion and Fixation. Classification of dyes. Direct dyes: General properties, principles and method of application on cellulosic materials. Reactive dyes – principles and method of application on cellulosic materials hot brand, cold brand.

UNIT IV PRINTING

9

Definition of printing – Difference between printing and dying- Classification thickeners – Requirements to be good thickener, printing paste Preparation - different styles of printing.

UNIT V MACHINERIES

9

Fabric Processing - winch, jigger and soft flow machines. Beam dyeing machines: Printing -flat bed screen - Rotary screen. Thermo transfer printing machinery. Garment dyeing machines.

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to Understand the

CO1: Basics of grey fabric

CO2: Basics of pre treatment

CO3: Concept of Dyeing

CO4: Concept of Printing

CO5: Machinery in processing industry

TEXT BOOKS:

- 1. Trotman, E.R., Textile Scouring and Bleaching, Charless Griffins, Com. Ltd., London 1990.
- 2. Shenai V.A. "Technology of Textile Processing Vol. IV" 1998, Sevak Publications, Mumbai.

REFERENCES:

- 1. Trotman E. R., "Dyeing and Chemical Technology of Textile Fibres", Charles Griffin & Co. Ltd., U.K., 1984, ISBN: 0 85264 165 6.
- 2. Dr. N N Mahapatra., "Textile dyeing", Wood head publishing India, 2018
- 3. Mathews Kolanjikombil., "Dyeing of Textile substrates III –Fibres, Yarns and Knitted fabrics", Wood head publishing India , 2021
- 4. Bleaching & Mercerizing BTRA Silver Jubilee Monograph series
- 5. Chakraborty, J.N, "Fundamentals and Practices in colouration of Textiles", Wood head Publishing India, 2009, ISBN-13:978-81-908001-4-3.

Course Articulation Matrix:

Cours	Statement	Prog	gran	ո Ou	tcor	ne	- 5			•	1	4	- 7			
e Outco mes	7	PO 1	P O 2	P O 3	P O 4	P O 5	P O 6	P O 7	P 0 8	P O 9	P 0 10	P O 11	P O 12	P S O 1	P S O 2	PS O3
CO1	Classificatio n of fibres and production of natural fibres		-		-			-	2	1	7	1	1	9	1	-
CO2	Regenerated and synthetic fibres						-	-	2	1		1	1	-	1	-
CO3	Yarn spinning	7	-	-	-	-	-	-	2	1	4	1	1	-	1	-
CO4	Weaving	-		-			-	-	2	1	-	1	1	-	1	-
CO5		ΝĖ	55	-	1-1	0 L	6		2	1	-	1	1	-	1	-
Overall	CO	-	-	-	-	-	-	-	2	1	-	1	1	-	1	-

^{1, 2} and 3 are correlation levels with weightings as Slight (Low), Moderate (Medium) and Substantial (High) respectively

COURSE OBJECTIVES

• To enable the students to learn about the types of fibre and its properties

UNIT I INTRODUCTION TO TEXTILE FIBRES

9

Definition of various forms of textile fibres - staple fibre, filament, bicomponent fibres. Classification of Natural and Man-made fibres, essential and desirable properties of Fibres. Production and cultivation of Natural Fibers: Cotton, Silk, Wool -Physical and chemical structure of the above fibres.

UNIT II REGENERATED FIBRES

9

Production Sequence of Regenerated Cellulosic fibres: Viscose Rayon, Acetate rayon – High wet modulus fibres: Modal and Lyocel ,Tencel

UNIT III SYNTHEITC FIBRES

9

Production Sequence of Synthetic Fibers: polymer-Polyester, Nylon, Acrylic and polypropylene. Mineral fibres: fibre glass ,carbon .Introduction to spin finishes and texturization

UNIT IV SPECIALITY FIBRES

9

Properties and end uses of high tenacity and high modulus fibres, high temperature and flame retardant fibres, Chemical resistant fibres

UNIT V FUNCTIONAL SPECIALITY FIBRES

g

TOTAL: 45 PERIODS

Properties and end uses : Fibres for medical application – Biodegradable fibres based on PLA ,Super absorbent fibres elastomeric fibres, ultra-fine fibres, electrospun nano fibres, metallic fibres – Gold and Silver coated.

COURSE OUTCOMES

Upon completion of this course, the student would be able to

- Understand the process sequence of various fibres
- Understand the properties of various fibres

TEXT BOOKS:

- 1. Morton W. E., and Hearle J. W. S., "Physical Properties of Textile Fibres", The Textile Institute, Washington D.C., 2008, ISBN 978-1-84569-220-95
- 2. Meredith R., and Hearle J. W. S., "Physical Methods of Investigation of Textiles", Wiley Publication, New York, 1989, ISBN: B00JCV6ZWU | ISBN-13:
- 3. Mukhopadhyay S. K., "Advances in Fibre Science", The Textile Institute,1992, ISBN: 1870812379

REFERENCES:

- 1. Meredith R., "Mechanical Properties of Textile Fibres", North Holland, Amsterdam, 1986, ISBN: 1114790699, ISBN-13: 9781114790698
- 2. Hearle J. W. S., Lomas B., and Cooke W. D., "Atlas of Fibre Fracture and Damage to Textiles", The Textile Institute, 2nd Edition, 1998, ISBN: 1855733196.
- 3. Raheel M. (ed.)., "Modern Textile Characterization Methods", Marcel Dekker, 1995, ISBN:0824794737
- 4. Mukhopadhyay. S. K., "The Structure and Properties of Typical Melt Spun Fibres", Textile Progress, Vol. 18, No. 4, Textile Institute, 1989, ISBN: 1870812115
- 5. Hearle J.W.S., "Polymers and Their Properties: Fundamentals of Structures and Mechanics Vol 1", Ellis Horwood, England, 1982, ISBN: 047027302X | ISBN-13: 9780470273029 36

OTT355

GARMENT MANUFACTURING TECHNOLOGY

LTPC 3003

OBJECTIVE:

- To enable the students to understand the basics of pattern making, cutting and sewing.
- To expose the students to various problems & remedies during garment manufacturing

UNIT I PATTERN MAKING, MARKER PLANNING, CUTTING

9

Anthropometry, specification sheet, pattern making – principles, basic pattern set drafting, grading, marker planning, spreading & cutting

UNIT II TYPES OF SEAMS, STITCHES AND FUNCTIONS OF NEEDLES 9

Different types of seams and stitches; single needle lock stitch machine – mechanism and accessories; needle – functions, special needles, needlepoint

UNIT III COMPONENTS AND TRIMS USED IN GARMENT

9

9

Sewing thread-construction, material, thread size, packages, accessories – labels, linings, interlinings, wadding, lace, braid, elastic, hook and loop fastening, shoulder pads, eyelets and laces, zip fasteners, buttons

UNIT IV GARMENT INSPECTION AND DIMENSIONAL CHANGES

Raw material, in process and final inspection; needle cutting; sewability of fabrics; strength properties of apparel; dimensional changes in apparel due to laundering, dry-cleaning, steaming and pressing.

UNIT V GARMENT PRESSING, PACKING AND CARE LABELING

9

Garment pressing – categories and equipment, packing; care 262abelling of apparels

TOTAL: 45 PERIODS

OUTCOMES:

Upon completion of the course, the students will be able to Understand

CO1: Pattern making, marker planning, cutting

CO2: Types of seams, stitches and functions of needles

CO3: Components and trims used in garment

CO4: Garment inspection and dimensional changes

CO5: Garment pressing, packing and careabelling

TEXT BOOKS:

- 1. Carr H., and Latham B., "The Technology of Clothing Manufacture", Blackwell Science Ltd., Oxford, 1994.
- 2. Gerry Cooklin, "Introduction to Clothing Manufacture" Blackwell Science Ltd., 1995. 64
- 3. Harrison.P.W Garment Dyeing, The Textile Institute Publication, Textile Progress, Vol. 19 No.2,1988.

REFERENCES:

- 1. Winifred Aldrich., "Metric Pattern Cutting", Blackwell Science Ltd., Oxford, 1994
- 2. Peggal H., "The Complete Dress Maker", Marshall Caverdish, London, 1985
- 3. Jai Prakash and Gaur R.K., "Sewing Thread", NITRA, 1994
- 4. Ruth Glock, Grace I. Kunz, "Apparel Manufacturing", Dorling Kindersley Publishing Inc., New Jersey, 1995.
- 5. Pradip V.Mehta, "An Introduction to Quality Control for the Apparel Industry", J.S.N. Internationals, 1992.

						P	O's							PSC	D's	
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
1	1	1	1	-	2	ı	1	1	ı	2	3	1	2	3	1	3
2	2	2	1	1	1	-	1	1	-	2	2	1	2	2	1	2
3	1	1	1	1	1	1	1	1	-	1	2	1	1	3	1	3
4	2	1	1	1	2	2	2	1	1	2	3	1	2	3	1	3
5	2	2	1	1	1	1	2	1	-	2	2	1	2	2	1	2
Avg	1.6	1.2	1	0.8	1.4	0.8	1.4	1	0.2	1.8	2.4	1	1.8	2.6	1	2.6

OBJECTIVES:

- To educate about the health hazards and the safety measures to be followed in the industrial environment.
- Describe industrial legislations (Factories Acts, Workmen's Compensation and other laws) enacted for the protection of employees health at work settings
- Describe methods of prevention and control of Occupational Health diseases, accidents / emergencies and other hazards

UNIT I INTRODUCTION

Need for developing Environment, Health and Safety systems in work places - Accident Case Studies - Status and relationship of Acts - Regulations and Codes of Practice - Role of trade union safety representatives. International initiatives - Ergonomics and work place.

UNIT II OCCUPATIONAL HEALTH AND HYGIENE

Definition of the term occupational health and hygiene - Categories of health hazards -Exposure pathways and human responses to hazardous and toxic substances - Advantages and limitations of environmental monitoring and occupational exposure limits - Hierarchy of control measures for occupational health risks - Role of personal protective equipment and the selection criteria - Effects on humans - control methods and reduction strategies for noise, radiation and excessive stress.

UNIT III **WORKPLACE SAFETY AND SAFETY SYSTEMS**

Features of Satisfactory and Safe design of work premises - good housekeeping - lighting and colour, Ventilation and Heat Control - Electrical Safety - Fire Safety - Safe Systems of work for manual handling operations - Machine guarding - Working at different levels - Process and System Safety.

UNIT IV HAZARDS AND RISK MANAGEMENT

9

Safety appraisal - analysis and control techniques - plant safety inspection - Accident investigation - Analysis and Reporting - Hazard and Risk Management Techniques - major accident hazard control - Onsite and Offsite emergency Plans.

ENVIRONMENTAL HEALTH AND SAFETY MANAGEMENT UNIT V

9

Concept of Environmental Health and Safety Management – Elements of Environmental Health and Safety Management Policy and methods of its effective implementation and review -Elements of Management Principles – Education and Training – Employee Participation.

TOTAL: 45 PERIODS

OUTCOMES:

After completion of this course, the student is expected to be able to:

- Describe, with example, the common work-related diseases and accidents in occupational setting
- Name essential members of the Occupational Health team
- What roles can a community health practitioners play in an Occupational setting to ensure the protection, promotion and maintenance of the health of the employee

OPE354 UNIT OPERATIONS IN PETRO CHEMICAL INDUSTRIES

LTPC

3003

OBJECTIVES:

 To impart to the student basic knowledge on fluid mechanics, mechanical operations, heat transfer operations and mass transfer operations.

FLUID MECHANICS CONCEPTS

Fluid definition and classification of fluids, types of fluids, Rheological behaviour of fluids & Newton's Law of viscosity. Fluid statics-Pascal's law, Hydrostatic equilibrium, Barometric equation and pressure measurement(problems), Basic equations of fluid flow - Continuity equation, Euler's equation and Bernoulli equation; Types of flow - laminar and turbulent;

Reynolds experiment; Flow through circular and non-circular conduits - Hagen Poiseuille equation (no derivation). Flow through stagnant fluids – theory of Settling and Sedimentation – Equipment (cyclones, thickeners) Conceptual numericals.

UNIT II FLOW MEASUREMENTS & MECHANICAL OPERATIONS

Different types of flow measuring devices (Orifice meter, Venturimeter, Rotameter) with derivations, flow measurements –. Pumps – types of pumps (Centrifugal & Reciprocating pumps), Energy calculations and characteristics of pumps. Size reduction—characteristics of comminute products, sieve analysis, Properties and handling of particulate solids – characterization of solid particles, average particle size, screen analysis- Conceptual numerical of differential and cumulative analysis. Size reduction, crushing laws, working principle of ball mill. Filtration & types, filtration equipments (plate and frame, rotary drum). Conceptual numericals.

UNIT III CONDUCTIVE & CONVECTIVE HEAT TRANSFER

9

Modes of heat transfer; Conduction – steady state heat conduction through unilayer and multilayer walls, cylinders; Insulation, critical thickness of insulation. Convection- Forced and Natural convection, principles of heat transfer co-efficient, log mean temperature difference, individual and overall heat transfer co-efficient, fouling factor; Condensation – film wise and drop wise (no derivation). Heat transfer equipments – double pipe heat exchanger, shell and tube heat exchanger (with working principle and construction with applications).

UNIT IV BASICS OF MASS TRANSFER

a

Diffusion-Fick's law of diffusion. Types of diffusion. Steady state molecular diffusion in fluids at rest and laminar flow (stagnant / unidirection and bi direction). Measurement of diffusivity, Mass transfer coefficients and their correlations. Conceptual numerical.

UNIT V MASS TRANSFER OPERATIONS

9

TOTAL: 45 PERIODS

Basic concepts of Liquid-liquid extraction – equilibrium, stage type extractors (belt extraction and basket extraction). Distillation – Methods of distillation, distillation of binary mixtures using McCabe Thiele method. Drying- drying operations, batch and continuous drying. Conceptual numerical.

COURSE OUTCOMES:

At the end of the course the student will be able to:

- State and describe the nature and properties of the fluids.
- Study the different flow measuring instruments, the principles of various size reductions, conveying equipment's, sedimentation and mixing tanks.
- Comprehend the laws governing the heat and mass transfer operations to solve the problems.
- Design the heat transfer equipment suitable for specific requirement.

TEXTBOOK(S)

- 1. Unit operations in Chemical Engineering Warren L. McCabe, Julian C. Smith & Peter Harriot McGraw-Hill Education (India) Edition 2014
- 2. Fluid Mechanics K L Kumar S Chand & Company Ltd 2008
- 3. Introduction to Chemical Engineering Badger W.I. and Banchero, J.T., Tata McGraw Hill New York 1997

REFERENCE BOOKS

- 1. Principles of Unit Operations Alan S Foust, L.A. Wenzel, C.W. Clump, L. Maus, and L.B. Anderson John Wiley & Sons 2nd edition 2008
- 2. Unit Operations of Chemical Engineering, Vol I &II Chattopadhyaya Khanna Publishers, Delhi-6 1996
- 3. Heat Transfer J P Holman McGraw Hill International Ed

COURSE OBJECTIVES

- Understand the advantages, disadvantages and general classification of plastic materials
- To know the manufacturing, sources, and applications of engineering thermoplastics
- Understand the basics as well as the advanced applications of various plastic materials in the industry
- To understand the preparation methods of thermosetting materials
- Select suitable specialty plastics for different end applications

UNIT I INTRODUCTION TO PLASTIC MATERIALS

C

Introduction to Plastics – Brief history of plastics, advantages and disadvantages, thermoplastic and thermosetting behavior, amorphous polymers, crystalline polymers and cross-linked structures. General purpose thermoplastics/ Commodity plastics: manufacture, structure, properties and applications of polyethylene (PE), cross-linked PE, chlorinated PE, polypropylene, polyvinyl chloride-compounding, formulation, polypropylene (PP)

UNIT II ENGINEERING THERMOPLASTICS AND APPLICATIONS

q

Engineering thermoplastics – Aliphatic polyamides: structure, properties, manufacture and applications of Nylon 6, Nylon 66. Polyesters: manufacture, structure, properties and uses of PET, PBT. Manufacture, structure, properties and uses of Polycarbonates, acetal resins, polyimides, PMMA, polyphenylene oxide, thermoplastic polyurethane (PU)

UNIT III THERMOSETTING PLASTICS

9

Thermosetting Plastics – Manufacture, curing, moulding powder, laminates, properties and uses of phenol formaldehyde resins, urea formaldehyde, melamine formaldehyde, unsaturated polyester resin, epoxy resin, silicone resins, polyurethane resins.

UNIT IV MISCELLANEOUS PLASTICS FOR END APPLICATIONS

q

Miscellaneous plastics- Manufacture, properties and uses of polystyrene, HIPS, ABS, SAN, poly(tetrafluoroethylene) (PTFE), TFE and copolymers, PVDF, PVA, poly (vinyl acetate), poly (vinyl carbazole), cellulose acetate, PEEK, High energy absorbing polymers, super absorbent polymers- their synthesis, properties and applications

UNIT V PLASTICS MATERIALS FOR BIOMEDICAL APPLICATIONS

9

Sources, raw materials, methods of manufacturing, properties and applications of bio-based polymers- poly lactic acid (PLA), poly hydroxy alkanoates (PHA), PBAT, bioplastics- bio-PE, bio-PP, bio-PET, polymers for biomedical applications

TOTAL HOURS: 45

COURSE OUTCOMES

- To study the importance, advantages and classification of plastic materials
- Summarize the raw materials, sources, production, properties and applications of various engineering thermoplastics
- To understand the application of polyamides, polyesters and other engineering thermoplastics, thermosetting resins
- Know the manufacture, properties and uses of thermosetting resins based on polyester, epoxy, silicone and PU
- To understand the engineering applications of various polymers in miscellaneous areas and applications of different biopolymers

REFERENCES

- 1. Marianne Gilbert (Ed.), Brydson's Plastics Materials, 8th Edn., Elsevier (2017).
- 2. J.A.Brydson, Plastics Materials, 7th Edn., Butterworth Heinemann (1999).
- 3. Manas Chanda, Salil K. Roy, Plastics Technology Handbook, 4th Edn., CRC press (2006).
- 4. A. Brent Strong, Plastics: Materials and Processing, 3rd Edn., Pearson Prentice Hall (2006).
- 5. Olagoke Olabisi, Kolapo Adewale (Eds.), Handbook of Thermoplastics 2nd

Edn., CRC press(2016).

- 6. Charles A. Harper, Modern Plastics Handbook, McGraw-Hill, New York, 1999.
- 7. H. Dominighaus, Plastics for Engineers, Hanser Publishers, Munich, 1988.

OPT353 PROPERTIES AND TESTING OF PLASTICS

LTPC 3003

COURSE OBJECTIVES

- To understand the relevance of standards and specifications as well as the specimen preparation for polymer testing.
- To study the mechanical properties and testing of polymer materials and their structural property relationships.
- To understand the thermal properties of polymers and their testing methods.
- To gain knowledge on the electrical and optical properties of polymers and their testing methods.
- To study about the environmental effects and prevent polymer degradation.

UNIT I INTRODUCTION TO CHARACTERIZATION AND TESTING OF POLYMERS 9 Introduction- Standard organizations: BIS, ASTM, ISO, BS, DIN etc. Standards and specifications. Importance of standards in the quality control of polymers and polymer products. Preparation of test pieces, conditioning and test atmospheres. Tests on elastomers: processability parameters of rubbers – plasticity, Mooney viscosity, scorch time, cure time, cure rate index, Processability tests carried out on thermoplastics and thermosets: MFI, cup flow index, gel time, bulk density, bulk factor.

UNIT II MECHANICAL PROPERTIES

9

Mechanical properties: Tensile, compression, flexural, shear, tear strength, hardness, impact strength, resilience, abrasion resistance, creep and stress relaxation, compression set, dynamic fatigue, ageing properties, Basic concepts of stress and strain, short term tests: Viscoelastic behavior (simple models: Kelvin model for creep and stress relaxation, Maxwell-Voigt model, strain recovery and dynamic response), Effect of structure and composition on mechanical properties, Behavior of reinforced polymers

UNIT III THERMAL RHEOLOGICAL PROPERTIES

9

Thermal properties: Transition temperatures, specific heat, thermal conductivity, co-efficient of thermal expansion, heat deflection temperature, Vicat softening point, shrinkage, brittleness temperature, thermal stability and flammability. Product testing: Plastic films, sheeting, pipes, laminates, foams, containers, cables and tubes.

UNIT IV ELECTRICAL AND OPTICAL PROPERTIES

9

Electrical properties: volume and surface resistivity, dielectric strength, dielectric constant and power factor, arc resistance, tracking resistance, dielectric behavior of polymers (dielectric coefficient, dielectric polarization), dissipation factor and its importance. Optical properties: transparency, refractive index, haze, gloss, clarity, birefringence.

UNIT V ENVIRONMENTAL AND CHEMICAL RESISTANCE

9

Environmental stress crack resistance (ESCR), water absorption, weathering, aging, ozone resistance, permeability and adhesion. Tests for chemical resistance. Acids, alkalies, Flammability tests- oxygen index test.

TOTAL: 45 PERIODS

COURSE OUTCOMES

- Understand the relevance of standards and specifications.
- Summarize the various test methods for evaluating the mechanical properties of the polymers.
- To know the thermal, electrical & optical properties of polymers.
- Identify various techniques used for characterizing polymers.
- Distinguish the processability tests used for thermoplastics, thermosets and elastomers.

REFERENCES

- 1. F.Majewska, H.Zowall, Handbook of analysis of synthetic polymers and plastics, Ellis Horwood Limited Publisher 1977.
- 2. J.F.Rabek, Experimental Methods in Polymer Chemistry, John Wiley and Sons 1980.
- 3. R.P.Brown, Plastic test methods, 2nd Edn., Harlond, Longman Scientific, 1981.
- 4. A. B. Mathur, I. S. Bharadwaj, Testing and Evaluation of Plastcis, Allied Publishers Pvt. Ltd., New Delhi, 2003.
- 5. Vishu Shah, Handbook of Plastic Testing Technology, 3rd Edn., John Wiley & Sons 2007.
- 6. S. K. Nayak, S. N. Yadav, S. Mohanty, Fundamentals of Plastic Testing, Springer, 2010.

OEC353 VLSI DESIGN

LTPC 3003

OBJECTIVES:

- Understand the fundamentals of IC technology components and their characteristics.
- Understand combinational logic circuits and design principles.
- Understand sequential logic circuits and clocking strategies.
- Understand Interconnects and Memory Architecture.
- Understand the design of arithmetic building blocks

UNIT I MOS TRANSISTOR PRINCIPLES

9

MOS logic families (NMOS and CMOS), Ideal and Non Ideal IV Characteristics, CMOS devices. MOS(FET) Transistor DC transfer Characteristics ,small signal analysis of MOSFET.

UNIT II COMBINATIONAL LOGIC CIRCUITS

9

Propagation Delays, stick diagram, Layout diagrams, Examples of combinational logic design, Elmore's constant, Static Logic Gates, Dynamic Logic Gates, Pass Transistor Logic, Power Dissipation.

UNIT III SEQUENTIAL LOGIC CIRCUITS AND CLOCKING STRATEGIES

Static Latches and Registers, Dynamic Latches and Registers, Pipelines, Timing classification of Digital Systems, Synchronous Design, Self-Timed Circuit Design .

UNIT IV INTERCONNECT, MEMORY ARCHITECTURE

9

9

Interconnect Parameters – Capacitance, Resistance, and Inductance, Logic Implementation using Programmable Devices (ROM, PLA, FPGA), Memory Architecture and Building Blocks.

UNIT V DESIGN OF ARITHMETIC BUILDING BLOCKS

9

Arithmetic Building Blocks: Data Paths, Adders-Ripple Carry Adder, Carry-Bypass Adder, Carry Select Adder, Carry-Look Ahead Adder, Multipliers, Barrel Shifter, power and speed tradeoffs.

TOTAL: 45 PERIODS

OUTCOMES:

Upon successful completion of the course the student will be able to

CO1: Understand the working principle and characteristics of MOSFET

CO2: Design Combinational Logic Circuits

CO3: Design Sequential Logic Circuits and Clocking systems

CO4: Understand Memory architecture and interconnects

CO5: Design of arithmetic building blocks.

TEXTBOOKS

- 1. Jan D Rabaey, Anantha Chandrakasan, "Digital Integrated Circuits: A Design Perspective", PHI, 2016.(Units II, III IV and V).
- 2. Neil H E Weste, Kamran Eshranghian, "Principles of CMOS VLSI Design: A System Perspective," Addison Wesley, 2009.(Units I).

REFERENCES

- 1. D.A. Hodges and H.G. Jackson, Analysis and Design of Digital Integrated Circuits, International Student Edition, McGraw Hill 1983
- 2. P. Rashinkar, Paterson and L. Singh, "System-on-a-Chip Verification-Methodology and Techniques", Kluwer Academic Publishers, 2001
- 3. Samiha Mourad and Yervant Zorian, "Principles of Testing Electronic Systems", Wiley 2000
- 4. M. Bushnell and V. D. Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits", Kluwer Academic Publishers, 2000

С	РО	РО	РО	P01	P01	P01	PSO	PSO	PSO						
1	3	3	2	2	1	3	ı	1	-	-	2	3	3	3	3
2	3	3	2	2	1	-	1	1	-	-	1	2	3	3	3
3	3	1	3	2	1	2	ı	1	-	-	3	2	3	2	3
4	3	3	2	2	2	-	ı	ı	-	-	ı	1	3	3	2
5	2	1	3	2	2	1	1	ı	-	-	1	1	3	2	2
С	3	3	2	2	1	2	- 7	-	-	-	2	2	3	3	3

CBM370 WEARABLE DEVICES

LTPC 3 0 0 3

OBJECTIVES:

The student should be made to:

- To know the hardware requirement of wearable systems
- To understand the communication and security aspects in the wearable devices
- To know the applications of wearable devices in the field of medicine

UNIT I INTRODUCTION TO WEARABLE SYSTEMS AND SENSORS

Wearable Systems- Introduction, Need for Wearable Systems, Drawbacks of Conventional Systems for Wearable Monitoring, Applications of Wearable Systems, Types of Wearable Systems, Components of wearable Systems. Sensors for wearable systems-Inertia movement sensors, Respiration activity sensor, Impedance plethysmography, Wearable ground reaction force sensor.

UNIT II SIGNAL PROCESSING AND ENERGY HARVESTING FOR WEARABLE DEVICES

Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

UNIT III WIRELESS HEALTH SYSTEMS

9

Need for wireless monitoring, Definition of Body area network, BAN and Healthcare, Technical Challenges- System security and reliability, BAN Architecture – Introduction, Wireless communication Techniques.

UNIT IV SMART TEXTILE

9

Introduction to smart textile- Passive smart textile, active smart textile. Fabrication Techniques-Conductive Fibres, Treated Conductive Fibres, Conductive Fabrics, Conductive Inks.Case study- smart fabric for monitoring biological parameters - ECG, respiration.

UNIT V APPLICATIONS OF WEARABLE SYSTEMS

9

Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine.

TOTAL PERIODS:45

OUTCOMES:

On successful completion of this course, the student will be able to

- CO1: Describe the concepts of wearable system.
- CO2: Explain the energy harvestings in wearable device.
- CO3: Use the concepts of BAN in health care.
- CO4: Illustrate the concept of smart textile
- CO5: Compare the various wearable devices in healthcare system

TEXT BOOKS

- 1. Annalisa Bonfiglo and Danilo De Rossi, Wearable Monitoring Systems, Springer, 2011
- 2. Zhang and Yuan-Ting, Wearable Medical Sensors and Systems, Springer, 2013
- **3.** Edward Sazonov and Micheal R Neuman, Wearable Sensors: Fundamentals, Implementation and Applications, Elsevier, 2014
- **4.** Mehmet R. Yuce and JamilY.Khan, Wireless Body Area Networks Technology, Implementation applications, Pan Stanford Publishing Pte.Ltd, Singapore, 2012

REFERENCES

- 1. Sandeep K.S, Gupta, Tridib Mukherjee and Krishna Kumar Venkatasubramanian, Body Area Networks Safety, Security, and Sustainability, Cambridge University Press, 2013.
- 2. Guang-Zhong Yang, Body Sensor Networks, Springer, 2006.

CO's-PO's & PSO's MAPPING

CO's						PC)'s							PSO's	;
CUS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	2			1					1		1
2	3	2	1	1	2			. 1		. 7			1		1
3	3	2	1	1	2			1			1		1		1
4	3	2	1	1	2			1					1		1
5	3	2	1	1	2			1					1		1
AVg.	3	2	1	1	2			1					1		1

CBM356

MEDICAL INFORMATICS

LTPC 3003

Preamble:

- 1. To study the applications of information technology in health care management.
- 2. This course provides knowledge on resources, devices, and methods required to optimize the acquisition, storage, retrieval, and use of information in health and biomedicine.

UNIT I INTRODUCTION TO MEDICAL INFORMATICS

9

Introduction - Structure of Medical Informatics -Internet and Medicine -Security issues , Computer based medical information retrieval, Hospital management and information system, Functional capabilities of a computerized HIS, Health Informatics - Medical Informatics, Bioinformatics

UNIT II COMPUTERS IN CLINICAL LABORATORY AND MEDICAL IMAGING

a

Automated clinical laboratories-Automated methods in hematology, cytology and histology, Intelligent Laboratory Information System - Computer assisted medical imaging-nuclear medicine, ultrasound imaging, computed X-ray tomography, Radiation therapy and planning, Nuclear Magnetic Resonance.

UNIT III COMPUTERISED PATIENT RECORD

9

Introduction - conventional patient record, Components and functionality of CPR, Development tools, Intranet, CPR in Radiology- Application server provider, Clinical information system, Computerized prescriptions for patients.

UNIT IV COMPUTER ASSISTED MEDICAL DECISION-MAKING

9

Neuro computers and Artificial Neural Networks application, Expert system-General model of CMD, Computer-assisted decision support system-production rule system cognitive model, semantic networks, decisions analysis inclinical medicine-computers in the care of critically ill patients, Computer aids for the handicapped.

UNIT V RECENT TRENDS IN MEDICAL INFORMATICS

a

Virtual reality applications in medicine, Virtual endoscopy, Computer assisted surgery, Surgical simulation, Telemedicine - Tele surgery, Computer assisted patient education and health-Medical education and healthcare information, computer assisted instruction in medicine.

TOTAL: 45 PERIODS

Course Outcomes:

Upon completion of the course, students will be able to:

- 1. Explain the structure and functional capabilities of Hospital Information System.
- 2. Describe the need of computers in medical imaging and automated clinical laboratory.
- 3. Articulate the functioning of information storage and retrieval in computerized patient record system.
- 4. Apply the suitable decision support system for automated clinical diagnosis.
- 5. Discuss the application of virtual reality and telehealth technology in medical industry.

TEXT BOOKS:

- 1. Mohan Bansal, "Medical informatics", Tata McGraw Hill Publishing Ltd, 2003.
- 2. R.D.Lele, "Computers in medicine progress in medical informatics", Tata Mcgraw Hill.2005

REFERENCES:

1. Kathryn J. Hannah, Marion J Ball, "Health Informatics", 3rd Edition, Springer, 2006.

CO's-PO's & PSO's MAPPING

CO's	PO's												PSO's	5	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	3	2	1	1	2			1					1	1	1
2	3	2	1	1	2			1					1	1	1
3	3	2	1	1	2			1					1	1	1
4	3	2	1	1	2			1		1111			1	1	1
5	3	2	1	1	2	_		1			1		1	1	1
AVg.	3	2	1	1	2			1					1	1	1

OBT355

BIOTECHNOLOGY FOR WASTE MANAGEMENT

LTPC 3 0 0 3

UNIT I BIOLOGICAL TREATMENT PROCESS

J U 3

Fundamentals of biological process - Anaerobic process - Pretreatment methods in anaerobic process - Aerobic process, Anoxic process, Aerobic and anaerobic digestion of organic wastes - Factors affecting process efficiency - Solid state fermentation - Submerged fermentation - Batch and continous fermentation

UNIT II WASTE BIOMASS AND ITS VALUE ADDITION

9

Types of waste biomass – Solid waste management - Nature of biomass feedstock – Biobased economy/process – Value addition of waste biomass – Biotransformation of biomass – Biotransformation of marine processing wastes – Direct extraction of biochemicals from biomass – Plant biomass for industrial application

UNIT III BIOCONVERSION OF WASTES TO ENERGY

9

Perspective of biofuels from wastes - Bioethanol production - Biohydrogen Production - dark and photofermentative process - Biobutanol production - Biogas and Biomethane production -

Single stage anaerobic digestion, Two stage anaerobic digestion - Biodiesel production - Enzymatic hydrolysis technologies

UNIT IV CHEMICALS AND ENZYME PRODUCTION FROM WASTES

9

Production of lactic acid, succinic acid, citric acid – Biopolymer synthesis – Production of Amylases - Lignocellulolytic enzymes - Pectinolytic enzymes - Proteases – Lipases

UNIT V BIOCOMPOSTING OF ORGANIC WASTES

9

Overview of composting process - Benefitis of composting, Role of microorganisms in composting - Factors affecting the composting process - Waste Materials for Composting, Fundamentals of composting process - Composting technologies, Composting systems - Nonreactor Composting, Reactor composting - Compost Quality

TOTAL: 45 PERIODS

COURSE OUTCOMES

After completion of this course, the students should be able

- 1. To learn the various methods biological treatment
- 2. To know the details of waste biomass and its value addition
- 3. To develop the bioconversion processes to convert wastes to energy
- 4. To synthesize the chemicals and enzyme from wastes
- 5. To produce the biocompost from wastes
- 6. To apply the theoretical knowledge for the development of value added products

TEXT BOOKS

- 1. Antoine P. T., (2017) "Biofuels from Food Waste Applications of Saccharification Using Fungal Solid State Fermentation", CRC press
- 2. Joseph C A., (2019) "Anaerobic Waste-Wastewater Treatment and Biogas Plants-A Practical Handbook", CRC Press,

REFERENCE BOOKS

- 1. Palmiro P. and Oscar F.D'Urso, (2016) 'Biotransformation of Agricultural Waste and By-Products', The Food, Feed, Fibre, Fuel (4F) Economy, Elsevier
- 2. Kaur Brar S., Gurpreet Singh D. and Carlos R.S., (Eds), (2014) Biotransformation of Waste Biomass into High Value Biochemicals', Springer.
- 3. Keikhosro K, Editor, (2015) 'Lignocellulose-Based Bioproducts', Springer.
- 4. John P, (2014) 'Waste Management Practices-Municipal, Hazardous, and Industrial', Second Edition, CRC Press, 2014

OBT356

LIFESTYLE DISEASES

LTPC

3 0 0 3

UNIT I INTRODUCTION

9

Lifestyle diseases – Definition; Risk factors – Eating, smoking, drinking, stress, physical activity, illicit drug use; Obesity, diabetes, cardiovascular diseases, respiratory diseases, cancer; Prevention – Diet and exercise.

UNIT II CANCER

9

Types - Lung cancer, Mouth cancer, Skin cancer, Cervical cancer, Carcinoma oesophagus; Causes Tobacco usage, Diagnosis – Biomarkers, Treatment

UNIT III CARDIOVASCULAR DISEASES

9

Coronoary atherosclerosis – Coronary artery disease; Causes -Fat and lipids, Alcohol abuse - Diagnosis - Electrocardiograph, echocardiograph, Treatment, Exercise and Cardiac rehabilitation

UNIT IV DIABETES AND OBESITY

ç

Types of Diabetes mellitus; Blood glucose regulation; Complications of diabetes – Paediatric and dolescent obesity – Weight control and BMI

UNIT V RESPIRATORY DISEASES

9

Chronic lung disease, Asthma, COPD; Causes - Breathing pattern (Nasal vs mouth), Smoking - Diagnosis - Pulmonary function testing

TOTAL: 45 PERIODS

TEXT BOOKS:

- 1. R.Kumar&Meenal Kumar, "Guide to Prevention of Lifestyle Diseases", Deep & Deep Publications, 2003
- 2. Gary Eggar et al, "Lifestyle Medicine", 3rd Edition, Academic Press, 2017

REFERENCES:

- 1. James M.R, "Lifestyle Medicine", 2nd Edition, CRC Press, 2013
- 2. Akira Miyazaki et al, "New Frontiers in Lifestyle-Related Disease", Springer, 2008

OBT357

BIOTECHNOLOGY IN HEALTH CARE

LTPC 3 0 0 3

COURSE OBJECTIVES

The aim of this course is to

- 1. Create higher standard of knowledge on healthcare system and services
- 2. Prioritize advanced technologies for the diagnosis and treatment of various diseases

UNIT I PUBLIC HEALTH

g

Definition and Concept of Public Health, Historical aspects of Public Health, Changing Concepts of Public Health, Public Health versus Medical Care, Unique Features of Public Health, Determinants of Health (Social, Economic, Cultural, Environmental, Education, Genetics, Food and Nutrition). Indicators of health, Burden of disease, Role of different disciplines in Public Health.

UNIT II CLINICAL DISEASES

9

Communicable diseases: Chickenpox / Shingles, COVID-19, Tuberculosis, Hepatitis B, Hepatitis C, HIV / AIDS, Influenza, Swine flu. Non Communicable diseases: Diabetes mellitus, atherosclerosis, fatty liver, Obesity, Cancer

UNIT III VACCINOLOGY

9

History of Vaccinology, conventional approaches to vaccine development, live attenuated and killed vaccines, adjuvants, quality control, preservation and monitoring of microorganisms in seed lot systems. Instruments related to monitoring of temperature, sterilization, environment.

UNIT IV OUTPATIENT & IN PATIENT SERVICES

9

Radiotherapy, Nuclear medicine, surgical units, OT Medical units, G & Obs. units Pediatric, neonatal units, Critical care units, Physical medicine & Rehabilitation, Neurology, Gastroenterology, Endoscopy, Pulmonology, Cardiology.

UNIT V BASICS OF IMAGING MODALITIES

9

Diagnostic X-rays - Computer tomography - MRI - Ultrasonography - Endoscopy - Thermography - Different types of biotelemetry systems.

TOTAL: 45 PERIODS

TEXT BOOKS

 Joseph J.carr and John M. Brown, Introduction to Biomedical Equipment Technology, John Wiley and sons, New York, 4th Edition, 2012.

- 2. Thomas M. Devlin.Textbook of Biochemistry with clinical correlations. Wiley Liss Publishers
- 3. The Vaccine Book (2nd Ed.), Rafi Ahmed, Roy M. Anderson et. al.Editor(s): Barry R. Bloom, PaulHenri Lambert, Academic Press, 2016, Pages xxi-xxiv.

REFERENCE BOOKS

- 1. Suh, Sang, Gurupur, Varadraj P., Tanik, Murat M., Health Care Systems, Technology and Techniques, Springer, 1st Edition, 2011
- 2. Burtis & Ashwood W.B. Tietz Textbook of Clinical chemistry. Saunders Company
- 3. Levine, M. M. (2004). New Generation Vaccines. New York: M. Dekker

VERTICAL 1: FINTECH AND BLOCK CHAIN

CMG331 FINANCIAL MANAGEMENT LT P C 3 0 0 3

LEARNING OBJECTIVES

- 1.To acquire the knowledge of the decision areas in finance.
- 2. To learn the various sources of Finance
- 3. To describe about capital budgeting and cost of capital.
- 4. To discuss on how to construct a robust capital structure and dividend policy
- 5. To develop an understanding of tools on Working Capital Management.

UNIT I INTRODUCTION TO FINANCIAL MANGEMENT

C

Definition and Scope of Finance Functions - Objectives of Financial Management - Profit Maximization and Wealth Maximization- Time Value of money- Risk and return concepts.

UNIT II SOURCES OF FINANCE

9

Long term sources of Finance -Equity Shares - Debentures - Preferred Stock - Features - Merits and Demerits. Short term sources - Bank Sources, Trade Credit, Overdrafts, Commercial Papers, Certificate of Deposits, Money market mutual funds etc

UNIT III INVESTMENT DECISIONS:

9

Investment Decisions: capital budgeting – Need and Importance – Techniques of Capital Budgeting – Payback -ARR – NPV – IRR –Profitability Index.

Cost of Capital - Cost of Specific Sources of Capital - Equity -Preferred Stock- Debt - Reserves - Concept and measurement of cost of capital - Weighted Average Cost of Capital.

UNIT IV FINANCING AND DIVIDEND DECISION

9

Operating Leverage and Financial Leverage- EBIT-EPS analysis. Capital Structure – determinants of Capital structure- Designing an Optimum capital structure.

Dividend policy - Aspects of dividend policy - practical consideration - forms of dividend policy - Determinants of Dividend Policy

UNIT V WORKING CAPITAL DECISION

9

Working Capital Management: Working Capital Management - concepts - importance - Determinants of Working capital. Cash Management: Motives for holding cash — Objectives and Strategies of Cash Management. Receivables Management: Objectives - Credit policies.

TOTAL: 45 PERIODS

TEXT BOOKS

- 1. M.Y. Khan and P.K.Jain Financial management, Text, Tata McGraw Hill
- 2. M. Pandey Financial Management, Vikas Publishing House Pvt. Ltd

REFERENCES.

- 1. James C. Vanhorne –Fundamentals of Financial Management– PHI Learning,.
- 2. Prasanna Chandra, Financial Management,
- 3. Srivatsava, Mishra, Financial Management, Oxford University Press, 2011

OBJECTIVES:

CMG332

FUNDAMENTALS OF INVESTMENT

LT P C 3 0 0 3

- 1. Describe the investment environment in which investment decisions are taken.
- 2. Explain how to Value bonds and equities
- 3. Explain the various approaches to value securities
- 4. Describe how to create efficient portfolios through diversification
- 5. Discuss the mechanism of investor protection in India.

UNIT I THE INVESTMENT ENVIRONMENT

9

The investment decision process, Types of Investments - Commodities, Real Estate and

FinancialAssets, the Indian securities market, the market participants and trading of securities, securitymarket indices, sources of financial information, Concept of return and risk, Impact of Taxes and Inflation on return.

UNIT II FIXED INCOME SECURITIES

9

Bond features, types of bonds, estimating bond yields, Bond Valuation types of bond risks, defaultrisk and reditrating.

UNIT III APPROACHES TOEQUITYANALYSIS

g

Introduction to Fundamental Analysis, Technical Analysis and Efficient Market Hypothesis, dividend capitalisation models, and price-earnings multiple approach to equity valuation.

UNIT IV PORTFOLIO ANALYSIS AND FINANCIAL DERIVATIVES

9

Portfolio and Diversification, Portfolio Risk and Return; Mutual Funds; Introduction to Financial Derivatives; Financial Derivatives Markets in India

UNIT V INVESTOR PROTECTION

9

Role of SEBI and stock exchanges in investor protection; Investor grievances and their redressal system, insider trading, investors' awareness andactivism

TOTAL: 45 PERIODS

REFERENCES

- 1. Charles P. Jones, Gerald R. Jensen. Investments: analysis and management. Wiley, 14TH Edition, 2019.
- 2. Chandra, Prasanna. Investment analysis and portfolio management. McGraw-hill education, 5th, Edition, 2017.
- 3. Rustagi, R. P. Investment Management Theory and Practice. Sultan Chand & Sons, 2021.
- 4. ZviBodie, Alex Kane, Alan J Marcus, PitabusMohanty, Investments, McGraw Hill Education (India), 11 Edition(SIE), 2019

CMG333

BANKING, FINANCIAL SERVICES AND INSURANCE

LT P C 3 0 0 3

OBJECTIVES

- Understand the Banking system in India
- · Grasp how banks raise their sources and how they deploy it
- Understand the development in banking technology
- Understand the financial services in India
- Understand the insurance Industry in India

UNIT I INTRODUCTION TO INDIAN BANKING SYSTEM

9

Overview of Banking system – Structure – Functions –Banking system in India - Key Regulations in Indian Banking sector –RBI. Relationship between Banker and Customer - Retail & Wholesale Banking – types of Accounts - Opening and operation of Accounts.

UNIT II MANAGING BANK FUNDS/ PRODUCTS

9

Liquid Assets - Investment in securities - Advances - Loans.Negotiable Instruments - Cheques, Bills of Exchange & Promissory Notes.Designing deposit schemes - Asset and Liability Management - NPA's - Current issues on NPA's - M&A's of banks into securities market

UNIT III DEVELOPMENT IN BANKING TECHNOLOGY

9

Payment system in India – paper based – e payment –electronic banking –plastic money – e-money –forecasting of cash demand at ATM's –The Information Technology Act, 2000 in India – RBI's Financial Sector Technology vision document – security threats in e-banking & RBI's Initiative.

UNIT IV FINANCIAL SERVICES

9

Introduction – Need for Financial Services – Financial Services Market in India – NBFC — Leasing and Hire Purchase — mutual funds. Venture Capital Financing –Bill discounting – factoring – Merchant Banking

UNIT V INSURANCE

9

Insurance –Concept - Need - History of Insurance industry in India. Insurance Act, 1938 –IRDA – Regulations – Life Insurance - Annuities and Unit Linked Policies - Lapse of the Policy – revival – settlement of claim

TOTAL: 45 PERIODS

REFERENCES:

1. Padmalatha Suresh and Justin Paul, "Management of Banking and Financial Services, Pearson, Delhi, 2017.

- 2. Meera Sharma, "Management of Financial Institutions with emphasis on Bank and Risk Management", PHI Learning Pvt. Ltd., New Delhi 2010
- 3. Peter S. Rose and Sylvia C. and Hudgins, "Bank Management and Financial Services", Tata McGraw Hill, New Delhi, 2017

CMG334 INTRODUCTION TO BLOCKCHAIN AND ITS APPLICATIONS

LT P C 3 0 0 3

UNIT I INTRODUCTION TO BLOCKCHAIN

9

Blockchain: The growth of blockchain technology - Distributed systems - The history of blockchain and Bitcoin - Features of a blockchain - Types of blockchain, Consensus: Consensus mechanism - Types of consensus mechanisms - Consensus in blockchain. Decentralization: Decentralization using blockchain - Methods of decentralization - Routes to decentralization- Blockchain and full ecosystem decentralization - Smart contracts - Decentralized Organizations- Platforms for decentralization.

UNIT II INTRODUCTION TO CRYPTOCURRENCY

9

Bitcoin – Digital Keys and Addresses – Transactions – Mining – Bitcoin Networks and Payments – Wallets – Alternative Coins – Theoretical Limitations – Bitcoin limitations – Name coin – Prime coin – Zcash – Smart Contracts – Ricardian Contracts- Deploying smart contracts on a blockchain

UNIT III ETHEREUM

9

Introduction - The Ethereum network - Components of the Ethereum ecosystem - Transactions and messages - Ether cryptocurrency / tokens (ETC and ETH) - The Ethereum Virtual Machine (EVM), Ethereum Development Environment: Test networks - Setting up a private net - Starting up the private network

UNIT IV WEB3 AND HYPERLEDGE

9

Introduction to Web3 – Contract Deployment – POST Requests – Development Frameworks – Hyperledger as a Protocol – The Reference Architecture – Hyperledger Fabric – Distributed Ledger – Corda.

UNIT V EMERGING TRENDS

9

Kadena – Ripple – Rootstock – Quorum – Tendermint – Scalability – Privacy – Other Challenges – Blockchain Research – Notable Projects – Miscellaneous Tools.

TOTAL: 45 PERIODS

REFERENCE

- **1.** Imran. Bashir. Mastering block chain: Distributed Ledger Technology, Decentralization, and Smart Contracts Explained. Packt Publishing, 2nd Edition, 2018
- 2. Peter Borovykh, Blockchain Application in Finance, Blockchain Driven, 2nd Edition, 2018
- 3. ArshdeepBahga, Vijay Madisetti, "Blockchain Applications: A Hands On Approach", VPT, 2017.

UNIT I CURRENCY EXCHANGE AND PAYMENT

Understand the concept of Crypto currency- Bitcoin and Applications -Cryptocurrencies and Digital Crypto Wallets -Types of Cryptocurrencies - Cryptocurrencies and Applications, block chain, Artificial Intelligence, machine learning. Fintech users, Individual Payments, RTGS Systems, Immediate Page 54 of 90 Payment Service (IMPS), Unified Payments Interface (UPI).Legal and Regulatory Implications of Crypto currencies, Payment systems and their regulations.Digital Payments Smart Cards, Stored-Value Cards, EC Micropayments, Payment Gateways, Mobile Payments, Digital and Virtual Currencies, Security, Ethical, Legal, Privacy, and Technology Issues

UNIT II DIGITAL FINANCE AND ALTERNATIVE FINANCE

9

A Brief History of Financial Innovation, Digitization of Financial Services, Crowd funding, Charity and Equity,. Introduction to the concept of Initial Coin Offering

UNIT III INSURETECH

9

InsurTech Introduction , Business model disruption Al/ML in InsurTech ● IoT and InsurTech ,Risk Modeling ,Fraud Detection Processing claims and Underwriting Innovations in Insurance Services

UNIT IV PEER TO PEER LENDING

9

P2P and Marketplace Lending, New Models and New Products in market place lending P2P Infrastructure and technologies , Concept of Crowdfunding Crowdfunding Architecture and Technology ,P2P and Crowdfunding unicorns and business models , SME/MSME Lending: Unique opportunities and Challenges, Solutions and Innovations

UNIT V REGULATORY ISSUES

9

FinTech Regulations: Global Regulations and Domestic Regulations, Evolution of RegTech, RegTech Ecosystem: Financial Institutions, RegTech Ecosystem: StartupsRegTech, Startups: Challenges, RegTech Ecosystem: Regulators, Use of AI in regulation and Fraud detection

TOTAL: 45 PERIODS

REFERENCE

- 1. Swanson Seth, Fintech for Beginners: Understanding and Utilizing the power of technology, Createspace Independent Publishing Platform, 2016.
- Models AuTanda, Fintech Bigtech And Banks Digitalization and Its Impact On Banking Business, Springer, 2019
- 3. Henning Diedrich, Ethereum: Blockchains, Digital Assets, Smart Contracts, Decentralized Autonomous Organizations, Wildfire Publishing, 2016
- 4. Jacob William, FinTech:TheBeginner's Guide to Financial Technology, Createspace Independent Publishing Platform, 2016
- 5. IIBF, Digital Banking, Taxmann Publication, 2016
- 6. Jacob William, Financial Technology, Create space Independent Pub, 2016
- 7. Luke Sutton, Financial Technology: Bitcoin & Blockchain, Createspace Independent Pub, 2016

CMG336

INTRODUCTION TO FINTECH

LT P C 3 0 0 3

OBJECTIVES:

- 1. To learn about history, importance and evolution of Fintech
- 2. To acquire the knowledge of Fintech in payment industry
- 3. To acquire the knowledge of Fintech in insurance industry
- 4. To learn the Fintech developments around the world
- 5. To know about the future of Fintech

UNIT I INTRODUCTION

9

Fintech - Definition, History, concept, meaning, architecture, significance, Goals, key areas in Fintech, Importance of Fintech, role of Fintech in economic development, opportunities and

challenges in Fintech, Evolution of Fintech in different sectors of the industry - Infrastructure, Banking Industry, Startups and Emerging Markets, recent developments in FinTech, future prospects and potential issues with Fintech.

UNIT II PAYMENT INDUSTRY

9

FinTech in Payment Industry-Multichannel digital wallets, applications supporting wallets, onboarding and KYC application, FinTech in Lending Industry- Formal lending, Informal lending, P2P lending, POS lending, Online lending, Payday lending, Microfinance, Crowdfunding.

UNIT III INSURANCE INDUSTRY

9

FinTech in Wealth Management Industry-Financial Advice, Automated investing, Socially responsible investing, Fractional Investing, Social Investing. FinTech in Insurance Industry-P2P insurance, On-Demand Insurance, On-Demand Consultation, Customer engagement through Quote to sell, policy servicing, Claims Management, Investment linked health insurance.

UNIT IV FINTECH AROUND THE GLOBE

Q

FinTech developments - US, Europe and UK, Germany, Sweden, France, China, India, Africa, Australia, New Zealand, Brazil and Middle East, Regulatory and Policy Assessment for Growth of FinTech. FinTech as disruptors, Financial institutions collaborating with FinTech companies, The new financial world.

UNIT V FUTURE OF FINTECH

9

How emerging technologies will change financial services, the future of financial services, banking on innovation through data, why FinTech banks will rule the world, The FinTech Supermarket, Banks partnering with FinTech start-ups, The rise of BankTech, Fintech impact on Retail Banking, A future without money, Ethics in Fintech.

TOTAL: 45 PERIODS

REFERENCES

- 1. Arner D., Barbers J., Buckley R, The evolution of FinTech: a new post crisis paradigm, University of New South Wales Research Series, 2015
- 2. Susanne Chishti, Janos Barberis, The FINTECH Book: The Financial Technology Handbook for Investors, Entrepreneurs and Visionaries, Wiley Publications, 2016
- 3. Richard Hayen, FinTech: The Impact and Influence of Financial Technology on Banking and the Finance Industry, 2016
- 4. Parag Y Arjunwadkar, FinTech: The Technology Driving Disruption in the financial service industry CRC Press, 2018
- 5. Sanjay Phadke, Fintech Future: The Digital DNA of Finance Paperback. Sage Publications, 2020
- 6. Pranay Gupta, T. Mandy Tham, Fintech: The New DNA of Financial Services Paperback, 2018

VERTICAL 2: ENTREPRENEURSHIP

CMG337

FOUNDATIONS OF ENTREPRENERUSHIP

L T P C 3 0 0 3

Course Objectives

- To develop and strengthen the entrepreneurial quality and motivation of learners.
- To impart the entrepreneurial skills and traits essential to become successful entrepreneurs.
- To apply the principles and theories of entrepreneurship and management in Technology oriented businessess.
- To empower the learners to run a Technology driven business efficiently and effectively

UNIT I INTRODUCTION TO ENTREPRENEURSHIP

9

Entrepreneurship- Definition, Need, Scope - Entrepreneurial Skill & Traits - Entrepreneur vs. Intrapreneur; Classification of entrepreneurs, Types of entrepreneurs -Factors affecting

entrepreneurial development – Achievement Motivation – Contributions of Entreprenrship to Economic Development.

UNIT II BUSINESS OWNERSHIP & ENVRIONMENT

9

Types of Business Ownership – Buiness Envrionemental Factors – Political-Economic-Sociological-Technological-Environmental-Legal aspects – Human Reosurces Mobilisation-Basics of Managing Finance- Esentials of Marketing Management - Production and Operations Planning – Systems Management and Administration

UNIT III FUNDAMENTALS OF TECHNOPRENEURSHIP

9

Introduction to Technopreneurship - Definition, Need, Scope- Emerging Concepts- Principles - Characterisitcis of a technopreneur - Impacts of Technopreneurship on Society – Economy-Job Opportuinites in Technopreneurship - Recent trends

UNIT IV APPLICATIONS OF TECHNOPRENEURSHIP

9

Technology Entrepreneurship - Local, National and Global practices - Intrapreneurship and Technology interactions, Networking of entrepreneurial activities - Launching - Managing Technology based Product / Service entrepreneurship - Success Stories of Technopreneurs - Case Studies

UNIT V EMERGING TRENDS IN ENTREPRENERUSHIP

9

TOTAL45: PERIODS

Effective Business Management Strategies For Franchising - Sub-Contracting- Leasing-Technopreneurs - Agripreneurs - Netpreneurs- Portfolio entrepreneruship - NGO Entrepreneurship - Recent Entrepreneruial Develoments - Local - National - Global perspectives.

OUTCOMES:

Upon completion of this course, the student should be able to:

CO 1 Learn the basics of Entrepreneurship

CO 2 Understand the business ownership patterns and evnironment

CO 3 Understand the Job opportunites in Industries relating to Technopreneurship

CO 4 Learn about applications of tehnopreneurship and successful technopreneurs

CO 5 Acquaint with the recent and emerging trends in entrepreneruship

Text Books:

- 1) S.S.Khanka, "Entrepreneurial Development" S.Chand & Co. Ltd. Ram Nagar New Delhi, 2021.
- 2) Donal F Kuratko Entrepreneurship (11th Edition) Theory, Process, Practice by Published 2019 by Cengage Learning,

References:

- 1) Daniel Mankani. 2003. Technopreneurship: The successful Entrepreneur in the new Economy. Prentice Hall
- Edward Elgar. 2007. Entrepreneurship, Cooperation and the Firm: The Emergence and Survival of High-Technology Ventures in Europe. Edi: Jan Ulijn, Dominique Drillon, and Frank Lasch. Wiley Pub.
- 3) Lang, J. 2002, The High Tech Entrepreneur's Handbook, Ft.com.
- 4) David Sheff 2002, China Dawn: The Story of a Technology and Business Revolution,
- 5) HarperBusiness,https://fanny.staff.uns.ac.id/files/2013/12/Technopreneur-BASED-EDUCATION-REVOLUTION.pdf
- 6) JumpStart: A Technoprenuership Fable, Dennis Posadas, (Singapore: Pearson Prentice Hall, 2009
- 7) Basics of Technoprenuership: Module 1.1-1.2, Frederico Gonzales, President-PESO Inc; M. Barcelon, UP
- 8) Journal articles pertaining to Entrepreneurship

CMG338 TEAM BUILDING & LEADERSHIP MANAGEMENT FOR BUSINESS L T P C 3 0 0 3

- To develop and strengthen the Leadership qualities and motivation of learners.
- To impart the Leadership skills and traits essential to become successful entrepreneurs.
- To apply the principles and theories of Team Building in managing Technology oriented businessess.
- To empower the learners to build robust teams for running and leading a business efficiently and effectively

UNIT I INTRODUCTION TO MANAGING TEAMS

9

Introduction to Team - Team Dynamics - Team Formation - Stages of Team Devlopment - Enhancing teamwork within a group - Team Coaching - Team Decision Making - Virtual Teams - Self Directed Work Teams (SDWTs) - Multicultural Teams.

UNIT II MANAGING AND DEVELOPING EFFECTIVE TEAMS

q

Team-based Organisations- Leadershp roles in team-based organisations - Offsite training and team development - Experiential Learning - Coaching and Mentoring in team building - Building High-Performance Teams - Building Credibility and Trust - Skills for Developing Others - Team Building at the Top - Leadership in Teamwork Effectiveness.

UNIT III INTRODUCTION TO LEADERSHIP

9

Introduction to Leadership - Leadership Myths - Characteristics of Leader, Follower and Situation - Leadership Attributes - Personality Traits and Leadership - Intelligence Types and Leadership - Power and Leadership - Delegation and Empowerment .

UNIT IV LEADERSHIP IN ORGANISATIONS

9

Leadership Styles – LMX Theory- Leadership Theory and Normative Decision Model - Situational Leadership Model - Contingency Model and Path Goal Theory – Transactional and Transformational Leadership - Charismatic Leadership - Role of Ethics and Values in Organisational Leadership.

UNIT V LEADERSHIP EFFECTIVENESS

9

Leadership Behaviour - Assessment of Leadership Behaviors - Destructive Leadership - Motivation and Leadership - Managerial Incompetence and Derailment Conflict Management - Negotiation and Leadership - Culture and Leadership - Global Leadership - Recent Trends in Leadership.

TOTAL 45: PERIODS

OUTCOMES:

Upon completion of this course, the student should be able to:

CO 1 Learn the basics of managing teams for business.

CO 2 Understand developing effective teams for business management.

CO 3 Understand the fundamentals of leadership for running a business.

CO 4 Learn about the importance of leadership for business development.

CO 5 Acquaint with emerging trends in leadership effectiveness for entreprenerus."

REFERENCES:

- 1. Hughes, R.L., Ginnett, R.C., & Curphy, G.J., Leadership: Enhancing the lessons of experience ,9th Ed, McGraw Hill Education, Chennai, India. (2019).
- 2. Katzenback, J.R., Smith, D.K., The Wisdom of Teams: Creating the High Performance Organisations, Harvard Business Review Press, (2015).
- 3. Haldar, U.K., Leadership and Team Building, Oxford University Press, (2010). 4. Daft, R.L., The Leadership Experience, Cengage, (2015).
- 5. Daniel Levi, Group Dynamics for Teams ,4th Ed, (2014), Sage Publications.
- 6. Dyer, W. G., Dyer, W. G., Jr., & Dyer, J. H..Team building: Proven strategies for improving team performance, 5thed, Jossey-Bass, (2013).

CMG339 CREATIVITY & INNOVATION IN ENTREPRENEURSHIP

L T P C 3 0 0 3

COURSE OBJECTIVES

- To develop the creativity skills among the learners
- To impart the knowledge of creative intelligence essential for entrepreneurs

- To know the applications of innovation in entprerenship.
- To develeop innovative business models for business.

UNIT I CREATIVITY

9

Creativity: Definition- Forms of Creativity-Essence, Elaborative and Expressive Creativities-Quality of Creativity-Existential, Entrepreneurial and Empowerment Creativities – Creative Environment- Creative Technology- - Creative Personality and Motivation.

UNIT II CREATIVE INTELLIGENCE

9

Creative Intelligence: Convergent thinking ability – Traits Congenial to creativity – Creativity Training--Criteria for evaluating Creativity-Credible Evaluation- Improving the quality of our creativity – Creative Tools and Techniques - Blocks to creativity- fears and Disabilities-Strategies for Unblocking- Designing Creativity Enabling Environment.

UNIT III INNOVATION

9

Innovation: Definition- Levels of Innovation- Incremental Vs Radical Innovation-Product Innovation and Process- Technological, Organizational Innovation – Indicators- Characteristics of Innovation in Different Sectors. Theories in Innovation and Creativity- Design Thinking and Innovation- Innovation as Collective Change-Innovation as a system

UNIT IV INNOVATION AND ENTREPRENEURSHIP

9

Innovation and Entrepreneurship: Entrepreneurial Mindset , Motivations and Behaviours-Opportunity Analysis and Decision Making- Industry Understanding - Entrepreneurial Opportunities- Entrepreneurial Strategies – Technology Pull/Market Push – Product -Market fit

Unit V INNOVATIVE BUSINESS MODELS

9

TOTAL 45: PERIODS

Innovative Business Models: Customer Discovery-Customer Segments-Prospect Theory and Developing Value Propositions- Developing Business Models: Elements of Business Models – Innovative Business Models: Elements, Designing Innovative Business Models- Responsible Innovation and Creativity.

OUTCOMES:

Upon completion of this course, the student should be able to:

CO 1 Learn the basics of creativity for developing Entrepreneurship

CO 2 Understand the importance of creative inteligence for business growth

CO 3 Understand the advances through Innovation in Industries

CO 4 Learn about applications of innovation in building successful ventures

CO 5 Acquaint with developing innovative business models to run the business effeciently and effectively

Suggested Readings:

Creativity and Inovation in Entrepreneurship, Kankha, Sultan Chand

Pradip N Khandwalla, Lifelong Creativity, An Unending Quest, Tata Mc Graw Hill, 2004.

Paul Trott, Innovation Management and New Product Development, 4e, Pearson, 2018.

Vinnie Jauhari, Sudanshu Bhushan, Innovation Management, Oxford Higher Education, 2014. Innovation Management, C.S.G. Krishnamacharyulu, R. Lalitha, Himalaya Publishing House, 2010.

A. Dale Timpe, Creativity, Jaico Publishing House, 2003.

Brian Clegg, Paul Birch, Creativity, Kogan Page, 2009.

Strategic Innovation: Building and Sustaining Innovative Organizations- Course Era, Raj Echambadi.

CMG340 PRINCIPLES OF MARKETING MANAGEMENT FOR BUSINESS

L T P C 3 0 0 3

COURSE OBJECTIVES:

To provide basic knowledge of concepts, principles, tools and techniques of marketing for entrepreneurs

To provide an exposure to the students pertaining to the nature and Scope of marketing, which they are expected to possess when they enter the industry as practitioners.

To give them an understanding of fundamental premise underlying market driven strategies and the basic philosophies and tools of marketing management for business owners.

UNIT I INTRODUCTION TO MARKETING MANAGEMENT

9

Introduction - Market and Marketing - Concepts- Functions of Marketing - Importance of Marketing - Marketing Orientations - Marketing Mix-The Traditional 4Ps - The Modern Components of the Mix - The Additional 3Ps - Developing an Effective Marketing Mix.

UNIT II MARKETING ENVIRONMENT

9

Introduction - Environmental Scanning - Analysing the Organisation's Micro Environment and Macro Environment - Differences between Micro and Macro Environment - Techniques of Environment Scanning - Marketing organization - Marketing Research and the Marketing Information System, Types and Components.

UNIT III PRODUCT AND PRICING MANAGEMENT

9

Product- Meaning, Classification, Levels of Products – Product Life Cycle (PLC) - Product Strategies - Product Mix - Packaging and Labelling - New Product Development - Brand and Branding - Advantages and disadvantages of branding Pricing - Factors Affecting Price Decisions - Cost Based Pricing - Value Based and Competition Based Pricing - Pricing Strategies - National and Global Pricing.

UNIT IV PROMOTION AND DISTRIBTUION MANAGEMENT

9

Introduction to Promotion – Marketing Channels- Integrated Marketing Communications (IMC) - Introduction to Advertising and Sales Promotion – Basics of Public Relations and Publicity - Personal Selling - Process - Direct Marketing - Segmentation, Targeting and Positioning (STP)-Logistics Management- Introduction to Retailing and Wholesaling.

UNIT V CONTEMPORARY ISSUES IN MARKETING MANAGEMENT

g

Introduction - Relationship Marketing Vs. Relationship Management - Customer Relationship Management (CRM) - Forms of Relationship Management - CRM practices - Managing Customer Loyalty and Development — Buyer-Seller Relationships- Buying Situations in Industrial / Business Market - Buying Roles in Industrial Marketing - Factors that Influence Business - Services Marketing - E-Marketing or Online Marketing.

TOTAL 45 : PERIODS

COURSE OUTCOMES:

After completion of this course, the students will be able to:

- CO1 Have the awareness of marketing management process
- CO 2 Understand the marketing environment
- CO 3 Acquaint about product and pricing strategies
- CO 4 Knowledge of promotion and distribution in marketing management.
- CO 5 Comprehend the contemporary marketing scenairos and offer solutions to marketing issues.

REFERENCES:

- 1. Marketing Management, Sherlekar S.A, Himalaya Publishing House, 2016.
- Marketing Management , Philip Kortler and Kevin Lane Keller, PHI 15th Ed, 2015.
- 3 Marketing Management- An Indian perspective, Vijay Prakash Anand, Biztantra, Second edition, 2016.
- Marketing Management Global Perspective, Indian Context, V.S.Ramaswamy &
- S.Namakumari, Macmillan Publishers India,5th edition, 2015.
- 5. Marketing Management, S.H.H. Kazmi, 2013, Excel Books India.
- 6. Marketing Management- text and Cases, Dr. C.B.Gupta & Dr. N.Rajan Nair, 17th edition, 2016.

CMG341 HUMAN RESOURCE MANAGEMENT FOR ENTREPRENEURS L T P C

OBJECTIVES:

- 1. To introduce the basic concepts, structure and functions of human resource management for entrepreneurs.
- 2. To create an awareness of the roles, functions and functioning of human resource department.
- 3.To understand the methods and techniques followed by Human Resource Management practitioners.

UNIT I INTRODUCTION TO HRM

9

Concept, Definition, Objectives- Nature and Scope of HRM - Evolution of HRM - HR Manager Roles- Skills - Personnel Management Vs. HRM - Human Resource Policies - HR Accounting - HR Audit - Challenges in HRM.

UNIT II HUMAN RESOURCE PLANNING

9

HR Planning - Definition - Factors- Tools - Methods and Techniques - Job analysis- Job rotation- Job Description - Career Planning - Succession Planning - HRIS - Computer Applications in HR - Recent Trends

UNIT III RECRUITMENT AND SELECTION

9

Sources of recruitment- Internal Vs. External - Domestic Vs. Global Sources -eRecruitment - Selection Process- Selection techniques -eSelection- Interview Types- Employee Engagement.

UNIT IV TRAINING AND EMPLOYEE DEVELOPMENT

9

Types of Training - On-The-Job, Off-The-Job - Training Needs Analysis - Induction and Socialisation Process - Employee Compensation - Wages and Salary Administration - Health and Social Security Measures- Green HRM Practices

UNIT V CONTROLLING HUMAN RESOURCES

9

Performance Appraisal – Types - Methods - Collective Bargaining - Grievances Redressal Methods – Employee Discipline – Promotion – Demotion - Transfer – Dismissal - Retrenchment - Union Management Relationship - Recent Trends

TOTAL 45: PERIODS

OUTCOMES:

Upon completion of this course the learners will be able:

- CO 1 To understand the Evolution of HRM and Challenges faced by HR Managers
- CO 2 To learn about the HR Planning Methods and practices.
- CO 3 To acquaint about the Recruitment and Selection Techniques followed in Industries.
- CO 4 To known about the methods of Training and Employee Development.
- CO 5 To comprehend the techniques of controlling human resources in organisations.

REFERENCES

- 1) Gary Dessler and Biju Varkkey, Human Resource Management, 14e, Pearson, 2015.
- Mathis and Jackson, Human Resource Management, Cengage Learning 15e, 2017.
- 3) David A. Decenzo, Stephen.P.Robbins, and Susan L. Verhulst, Human Resource Management, Wiley, International Student Edition, 11th Edition, 2014
- 4) R. Wayne Mondy, Human Resource Management, Pearson, 2015.
- 5) Luis R.Gomez-Mejia, David B.Balkin, Robert L Cardy. Managing Human Resource. PHI Learning. 2012
- 6) John M. Ivancevich, Human Resource Management, 12e, McGraw Hill Irwin, 2013.
- 7) K. Aswathappa, Sadhna Dash, Human Resource Management Text and Cases, 9th Edition, McGraw Hill, 2021.
- 8) Uday Kumar Haldar, Juthika Sarkar. Human Resource management. Oxford. 2012

COURSE OBJECTIVES

- To develop the basics of business venture financing.
- To impart the knowledge essential for entrepreneurs for financing new ventures.
- To acquaint the learners with the sources of debt and quity financing.
- To empower the learners towards fund rasiing for new ventures effectively.

UNIT I ESSENTIALS OF NEW BUSINES VENTURE

(

Setting up new Business Ventures – Need - Scope - Franchising - Location Strategy, Registration Process - State Directorate of Industries- Financing for New Ventures - Central and State Government Agencies - Types of loans – Financial Institutions - SFC, IDBI, NSIC and SIDCO.

UNIT II INTRODUCTION TO VENTURE FINANCING

q

Venture Finance – Definition – Historic Background - Funding New Ventures- Need – Scope – Types - Cost of Project - Means of Financing - Estimation of Working Capital - Requirement of funds – Mix of Dent and Equity - Challenges and Opportunities.

UNIT III SOURCES OF DEBT FINANCING

9

Fund for Capital Assets - Term Loans - Leasing and Hire-Purchase - Money Market instruments - Bonds, Corporate Papers - Preference Capital- Working Capital Management-Fund based Credit Facilities - Cash Credit - Over Draft.

UNIT IV SOURCES OF EQUITY FINANCING

9

Own Capital, Unsecured Loan - Government Subsidies , Margin Money- Equity Funding - Private Equity Fund- Schemes of Commercial banks - Angel Funding - Crowdfunding- Venture Capital.

UNIT V METHODS OF FUND RAISING FOR NEW VENTURES

9

Investor Decision Process - Identifying the appropriate investors- Targeting investors- Developing Relationships with investors - Investor Selection Criteria- Company Creation-Raising Funds - Seed Funding- VC Selection Criteria - Process- Methods- Recent Trends

TOTAL 45: PERIODS

OUTCOMES:

Upon completion of this course, the students should be able to:

- CO 1 Learn the basics of starting a new business venture.
- CO 2 Understand the basics of venture financing.
- CO 3 Understand the sources of debt financing.
- CO 4 Understanf the sources of equity financing.
- CO 5 Acquaint with the methods of fund raising for new business ventures.

REFERENCES:

- 1) Principles of Corporate Finance by Brealey and Myers et al.,12TH ed, McGraw Hill Education (India) Private Limited, 2018
- 2) Prasanna Chandra, Projects: Planning, Analysis, Selection, Financing, Implementation and Review, McGraw Hilld Education India Pvt Ltd, New Delhi, 2019.
- 3) Introduction to Project Finance. Andrew Fight, Butterworth-Heinemann, 2006.
- 4) Metrick, Andrew; Yasuda, Ayako. Venture Capital And The Finance Of Innovation. Venture Capital And The Finance Of Innovation, 2nd Edition, Andrew Metrick And Ayako Yasuda, Eds., John Wiley And Sons, Inc, 2010.
- 5) Feld, Brad; Mendelson, Jason. Venture Deals. Wiley, 2011.
- 6) May, John; Simons, Cal. Every Business Needs An Angel: Getting The Money You Need To Make Your Business Grow. Crown Business, 2001.
- 7) Gompers, Paul Alan; Lerner, Joshua. The Money Of Invention: How Venture Capital Creates New Wealth. Harvard Business Press, 2001.
- 8) Camp, Justin J. Venture Capital Due Diligence: A Guide To Making Smart Investment Choices And Increasing Your Portfolio Returns. John Wiley & Sons, 2002.

- 9) Byers, Thomas. Technology Ventures: From Idea To Enterprise. Mcgraw-Hill Higher Education, 2014.
- 10) Lerner, Josh; Leamon, Ann; Hardymon, Felda. Venture Capital, Private Equity, And The Financing Of Entrepreneurship. 2012.

VERTICAL 3: PUBLIC ADMINISTRATION

CMG343	PRINCIPLES OF PUBLIC ADMINISTRATION	L TPC 3 003
	e and Scope of Public Administration Public Administration Dolic Administration	(9)
UNIT-II 1. New Public Adm 2. New Public Man 3. Public and Priva	nagement	(9)
UNIT-III 1. Relationships wi 2. Classical Approa 3. Scientific Manag		(9)
	oproach: Max Weber ns Approach : Elton Mayo oach : Riggs	(9)
2. Communication:	adership - Styles - Approaches : Communication Types - Process - Barriers g: Decision Making - Types, Techniques and Processes.	(9)
REFERENCEs:	TOTAL	L: 45 PERIODS
	haswari: Public Administration in India Agrad akshmi Narain	Agarwal 2013

- 1. Avasthi and Maheswari: Public Administration in India, Agra:Lakshmi Narain Agarwal,2013.
- 2. Ramesh K Arora: Indian Public Administration, New Delhi: Wishwa Prakashan, 2012.
- 3. R.B. Jain: Public Administration in India,21st Century Challenges for Good Governance, New Delhi: Deep and Deep, 2002.
- 4. Rumki Basu: Public Administration: Concept and Theories, New Delhi: Sterling, 2013.
- 5. R. Tyagi, Public Administration, Atma Ram & Sons, New Delhi, 1983.

3. Supreme Court

CMG344	CONSTITUTION OF INDIA	LTPC
UNIT-I 1. Constitutional Deve 2. Making of the Constituent Assemb		3 0 0 3 (9)
UNIT-II 1. Fundamental Rights 2. Fundamental Duties 3. Directive Principles	3	(9)
UNIT-III 1. President 2. Parliament		(9)

UNIT-IV (9)

- 1. Governor
- 2. State Legislature
- 3. High Court

UNIT-V (9)

- 1. Secularism
- 2. Social Justice
- 3. Minority Safeguards

TOTAL: 45 PERIODS

REFERENCES:

- 1. Basu. D.D.: Introduction to Indian Constitution; Prentice Hall; New Delhi.
- 2. Kapur. A.C: Indian Government and Political System; S.Chand and Company Ltd., New Delhi.
- 3. Johari J.C.: Indian Politics, Vishal Publications Ltd, New Delhi
- 4. Agarwal R.C: Indian Political System; S.Chand & Co., New Delhi

CMG345 PUBLIC PERSONNEL ADMINISTRATION LTPC 3003 **UNIT-I** (9)1. Meaning, Scope and Importance of Personnel Administration 2. Types of Personnel Systems: Bureaucratic, Democratic and Representative systems **UNIT-II** (9)1. Generalist Vs Specialist 2. Civil Servants' Relationship with Political Executive 3. Integrity in Administration. UNIT-III (9)1. Recruitment: Direct Recruitment and Recruitment from Within 2. Training: Kinds of Training 3. Promotion **UNIT-IV** (9)1. All India Services

- 2. Service Conditions
- 3. State Public Service Commission

UNIT-V (9)

- 1. Employer Employee Relations
- 2. Wage and Salary Administration
- 3. Allowances and Benefits

TOTAL: 45 PERIODS

REFERENCES:

- 1. Stahl Glean O: Public Personnel Administration
- 2. Parnandikar Pai V.A: Personnel System for Development Administration.
- 3. Bhambhiru . P: Bureaucracy and Policy in India.
- 4. Dwivedi O.P and Jain R.B: India's Administrative state.
- 5. Muttalis M.A: Union Public Service Commission.
- 6. Bhakara Rao .V: Employer Employee Relations in India.
- 7. Davar R.S. Personnel Management & Industrial Relations

CMG346 ADMINISTRATIVE THEORIES

1003 1003

UNIT I

(9)

Meaning, Scope and significance of Public Administration, Evolution of Public Administration as a discipline and Identity of Public Administration

UNIT II (9)

Theories of Organization: Scientific Management Theory, Classical Model, Human Relations Theory

UNIT III (9)

Organization goals and Behaviour, Groups in organization and group dynamics, Organizational Design.

UNIT IV (9)

Motivation Theories, content, process and contemporary; Theories of Leadership: Traditional and Modern: Process and techniques of decision-making

UNIT V (9)

Administrative thinkers: Kautilya, Woodrow Willson, C.I. Barnard . Peter Drucker

TOTAL: 45 PERIODS

TOTAL: 45 PERIODS

REFERENCES:

- 1. Crozior M: The Bureaucratic phenomenon (Chand)
- 2. Blau. P.M and Scott. W: Formal Organizations (RKP)
- 3. Presthus. R: The Organizational Society (MAC)
- 4. Alvi, Shum Sun Nisa: Eminent Administrative Thinkers.
- 5. Keith Davis: Organization Theory (MAC)

CMG347 INDIAN ADMINISTRATIVE SYSTEM

LTPC 3003

UNIT I

Evolution and Constitutional Context of Indian Administration, Constitutional Authorities: Finance Commission, Union Public Services Commission, Election Commission, Comptroller and Auditor General of India, Attorney General of India

UNIT II

Role & Functions of the District Collector, Relationship between the District Collector and Superintendent of Police, Role of Block Development Officer in development programmes, Local Government

UNIT III (9)

Main Features of 73rd Constitutional Amendment Act 1992, Salient Features of 74th Constitutional Amendment Act 1992

UNIT IV (9)

Coalition politics in India, Integrity and Vigilance in Indian Administration

UNIT V (9)

Corruption – Ombudsman, Lok Pal & Lok Ayuktha

REFERENCES:

- 1. S.R. Maheswari: Indian Administration
- 2. Khera. S.S: Administration in India
- 3. Ramesh K. Arora: Indian Public Administration
- 4. T.N. Chaturvedi: State administration in India
- 5. Basu, D.D: Introduction to the Constitution of India

CMG348

PUBLIC POLICY ADMINISTRATION

LTPC 3003

UNIT-I

(9)Meaning and Definition of Public Policy - Nature, Scope and Importance of public policy -Public policy relationship with social sciences especially with political science and Public Administration.

UNIT-II (9)

Approaches in Policy Analysis - Institutional Approach - Incremental Approach and System's Approach - Dror's Optimal Model

UNIT-III

Major stages involved in Policy making Process – Policy Formulation – Policy Implementation – Policy Evaluation.

UNIT-IV (9)

Institutional Framework of Policy making – Role of Bureaucracy – Role of Interest Groups and Role of Political Parties.

UNIT-V (9)

Introduction to the following Public Policies – New Economic Policy – Population Policy – Agriculture policy - Information Technology Policy.

REFERENCES:

- 1. Rajesh Chakrabarti & Kaushik Sanyal: Public Policy in India, Oxford University Press, 2016.
- 2. Kuldeep Mathur: Public Policy and Politics in India, Oxford University Press, 2016.
- 3. Bidyutv Chakrabarty: Public Policy: Concept, Theory and Practice, 2015.
- 4. Pradeep Saxena: Public Policy Administration and Development
- 5. Sapru R.K.: Public Policy: Formulation, Implementation and Evaluation, Sterling Publishers, 2016.

VERTICAL 4: BUSINESS DATA ANALYTICS

STATISTICS FOR MANAGEMENT **CMG349**

LTPC 3003

TOTAL: 45 PERIODS

OBJECTIVE:

> To learn the applications of statistics in business decision making.

UNIT I INTRODUCTION

Basic definitions and rules for probability, Baye's theorem and random variables, Probability distributions: Binomial, Poisson, Uniform and Normal distributions.

UNIT II SAMPLING DISTRIBUTION AND ESTIMATION

9

Introduction to sampling distributions, Central limit theorem and applications, sampling techniques, Point and Interval estimates of population parameters.

UNIT III TESTING OF HYPOTHESIS - PARAMETIRC TESTS

Hypothesis testing: one sample and two sample tests for means of large samples (z-test), one sample and two sample tests for means of small samples (t-test), ANOVA one way.

UNIT IV NON-PARAMETRIC TESTS

Chi-square tests for independence of attributes and goodness of fit, Kolmogorov-Smirnov – test for goodness of fit, Mann - Whitney U test and Kruskal Wallis test.

UNIT V CORRELATION AND REGRESSION

9

Correlation – Rank Correlation – Regression – Estimation of Regression line – Method of Least Squares – Standard Error of estimate.

TOTAL:45 PERIODS

OUTCOMES:

> To facilitate objective solutions in business decision making.

- > To understand and solve business problems
- To apply statistical techniques to data sets, and correctly interpret the results.
- > To develop skill-set that is in demand in both the research and business environments
- > To enable the students to apply the statistical techniques in a work setting.

REFERENCES:

- 1. Richard I. Levin, David S. Rubin, Masood H.Siddiqui, Sanjay Rastogi, Statistics for Management, Pearson Education, 8th Edition, 2017.
- 2. Prem. S. Mann, Introductory Statistics, Wiley Publications, 9th Edition, 2015.
- 3. T N Srivastava and Shailaja Rego, Statistics for Management, Tata McGraw Hill, 3rd Edition 2017.
- 4. Ken Black, Applied Business Statistics, 7th Edition, Wiley India Edition, 2012.
- 5. David R. Anderson, Dennis J. Sweeney, Thomas A.Williams, Jeffrey D.Camm, James J.Cochran, Statistics for business and economics, 13th edition, Thomson (South Western) Asia, Singapore, 2016.
- 6. N. D. Vohra, Business Statistics, Tata McGraw Hill, 2017.

CMG350 DATAMINING FOR BUSINESS INTELLIGENCE L T P C 3 0 0 3

OBJECTIVES:

- > To know how to derive meaning form huge volume of data and information.
- > To understand how knowledge discovering process is used in business decision making.

UNIT I INTRODUCTION Data mining, Text mining, Web mining, Data ware house. UNIT II DATA MINING PROCESS Datamining process – KDD, CRISP-DM, SEMMA Prediction performance measures UNIT III PREDICTION TECHNIQUES Data visualization, Time series – ARIMA, Winter Holts,

UNIT IV CLASSIFICATION AND CLUSTERING TECHNIQUES 9
Classification, Association, Clustering.

UNIT V MACHINE LEARNING AND AI
Genetic algorithms, Neural network, Fuzzy logic, Ant Colony optimization, Particle Swarm

optimization TOTAL: 45 PERIODS

OUTCOMES:

- 1. Learn to apply various data mining techniques into various areas of different domains.
- 2. Be able to interact competently on the topic of data mining for business intelligence.
- 3. Apply various prediction techniques.
- 4. Learn about supervised and unsupervised learning technique.
- 5. Develop and implement machine learning algorithms

REFERENCES:

- 1. Jaiwei Ham and Micheline Kamber, Data Mining concepts and techniques, Kauffmann Publishers 2006
- 2. Efraim Turban, Ramesh Sharda, Jay E. Aronson and David King, Business Intelligence, Prentice Hall, 2008.
- 3. W.H.Inmon, Building the Data Warehouse, fourth edition Wiley India pvt. Ltd. 2005.
- 4. Ralph Kimball and Richard Merz, The data warehouse toolkit, John Wiley, 3rd edition, 2013.
- 5. Michel Berry and Gordon Linoff, Mastering Data mining, John Wiley and Sons Inc, 2nd Edition, 2011

- 6. Michel Berry and Gordon Linoff, Data mining techniques for Marketing, Sales and Customer support, John Wiley, 2011
- 7. G. K. Gupta, Introduction to Data mining with Case Studies, Prentice hall of India, 2011
- 8. Giudici, Applied Data mining Statistical Methods for Business and Industry, John Wiley. 2009
- 9. Elizabeth Vitt, Michael Luckevich Stacia Misner, Business Intelligence, Microsoft, 2011 10. Michalewicz Z., Schmidt M. Michalewicz M and Chiriac C, Adaptive Business Intelligence, Springer Verlag, 2007
- 11. GalitShmueli, Nitin R. Patel and Peter C. Bruce, Data Mining for Business Intelligence Concepts, Techniques and Applications Wiley, India, 2010.

CMG351 HUMAN RESOURCE ANALYTICS

LTPC 3003

OBJECTIVE:

- To develop the ability of the learners to define and implement HR metrics that are aligned with the overall business strategy.
- ➤ To know the different types of HR metrics and understand their respective impact and application.
- ➤ To understand the impact and use of HR metrics and their connection with HR analytics.
- > To understand common workforce issues and resolving them using people analytics.

UNIT I - INTRODUCTION TO HR ANALYTICS

q

People Analytics - stages of maturity - Human Capital in the Value Chain : impact on business - HR metrics and KPIs.

UNIT II - HR ANLYTICS I: RECRUITMENT

9

Recruitment Metrics: Fill-up ratio - Time to hire - Cost per hire - Early turnover - Employee referral hires - Agency hires - Lateral hires - Fulfillment ratio - Quality of hire.

UNIT III - HR ANALYTICS - TRAINING AND DEVELOPMENT

9

Training & Development Metrics: Percentage of employees trained- Internally and externally trained -Training hours and cost per employee - ROI.

UNIT IV - HR ANALYTICS EMPLOYEE ENGAGEMENT AND CAREER PROGRESSION

9

Employee Engagement Metrics: Talent Retention index - Voluntary and involuntary turnovergrades, performance, and service tenure - Internal hired index Career Progression Metrics: Promotion index - Rotation index - Career path index.

UNIT V - HR ANALYTICS IV: WORKFORCE DIVERSITY AND DEVELOPMENT 9 Workforce Diversity and Development Metrics: Employees per manager – Workforce age profiling - Workforce service profiling - Churnover index - Workforce diversity index - Gender mix

TOTAL: 45 PERIODS

OUTCOME:

- > The learners will be conversant about HR metrics and ready to apply at work settings.
- The learners will be able to resolve HR issues using people analytics.

REFERENCES:

- 1. JacFitzenz, The New HR Analytics, AMACOM, 2010.
- 2. Edwards M. R., & Edwards K, Predictive HR Analytics: Mastering the HR Metric.London: Kogan Page.2016.
- 3. Human Resources kit for Dummies 3 rd edition Max Messmer, 2003
- 4. Dipak Kumar Bhattacharyya, HR Analytics , Understanding Theories and

Applications, SAGE Publications India ,2017.

- 5. Sesil, J. C., Applying advanced analytics to HR management decisions: Methods fo selection, developing incentives, and improving collaboration. Upper Saddle River, New Jersey: Pearson Education, 2014.
- 6. Pease, G., & Beresford, B, Developing Human Capital: Using Analytics to Plan and Optimize Your Learning and Development Investments. Wiley ,2014.
- 7. Phillips, J., & Phillips, P.P, Making Human Capital Analytics Work: Measuring the ROI of Human Capital Processes and OUTCOME. McGraw-Hill, 2014.
- 8. HR Scorecard and Metrices, HBR, 2001.

CMG352 MARKETING AND SOCIAL MEDIA WEB ANALYTICS

LTPC 3003

OBJECTIVE:

To showcase the opportunities that exist today to leverage the power of the web and social media

UNIT I - MARKETING ANALYTICS

g

Marketing Budget and Marketing Performance Measure, Marketing - Geographical Mapping, Data Exploration, Market Basket Analysis

UNIT II - COMMUNITY BUILDING AND MANAGEMENT

9

History and Evolution of Social Media-Understanding Science of Social Media –Goals for using Social Media- Social Media Audience and Influencers - Digital PR- Promoting Social Media Pages- Linking Social Media Accounts-The Viral Impact of Social Media.

UNIT III - SOCIAL MEDIA POLICIES AND MEASUREMENTS

9

Social Media Policies-Etiquette, Privacy- ethical problems posed by emerging social media technologies - The Basics of Tracking Social Media.

UNIT IV - WEB ANALYTICS

9

Data Collection, Overview of Qualitative Analysis, Business Analysis, KPI and Planning, Critical Components of a Successful Web Analytics Strategy, Proposals & Reports, Web Data Analysis.

UNIT V - SEARCH ANALYTICS

C

TOTAL: 45 PERIODS

Search engine optimization (SEO), user engagement, user-generated content, web traffic analysis, online security, online ethics, data visualization.

OUTCOME:

The Learners will understand social media, web and social media analytics and their potential impact.

REFERENCES:

- 1. K. M. Shrivastava, Social Media in Business and Governance, Sterling Publishers Private Limited, 2013
- 2. Christian Fuchs, Social Media a critical introduction, SAGE Publications Ltd, 2014
- 3. Bittu Kumar, Social Networking, V & S Publishers, 2013
- 4. Avinash Kaushik, Web Analytics An Hour a Day, Wiley Publishing, 2007
- 5. Ric T. Peterson, Web Analytics Demystified, Celilo Group Media and CafePress 2004
- 6. Takeshi Moriguchi, Web Analytics Consultant Official Textbook, 7th Edition, 2016

OPERATION AND SUPPLY CHAIN ANALYTICS

LTPC 3003

OBJECTIVE:

To treat the subject in depth by emphasizing on the advanced quantitative models and methods in operations and supply chain management and its practical aspects and the latest developments in the field.

UNIT I - INTRODUCTION

9

Descriptive, predictive and prescriptive analytics, Data Driven Supply Chains – Basics, transforming supply chains.

UNIT II - WAREHOUSING DECISIONS

9

P-Median Methods - Guided LP Approach, Greedy Drop Heuristics, Dynamic Location Models, Space Determination and Layout Methods.

UNIT III - INVENTORY MANAGEMENT

q

Dynamic Lot sizing Methods, Multi-Echelon Inventory models, Aggregate Inventory system and LIMIT, Risk Analysis in Supply Chain, Risk pooling strategies.

UNIT IV - TRANSPORTATION NETWORK MODELS

9

Minimal Spanning Tree, Shortest Path Algorithms, Maximal Flow Problems, Transportation Problems, Set covering and Set Partitioning Problems, Travelling Salesman Problem, Scheduling Algorithms.

UNIT V - MCDM MODELS

C

Analytic Hierarchy Process(AHP), Data Envelopment Analysis (DEA), Fuzzy Logic an Techniques, the analytical network process (ANP), TOPSIS.

TOTAL: 45 PERIODS

OUTCOME:

To enable quantitative solutions in business decision making under conditions of certainty, risk and uncertainty.

REFERENCES:

- 1. Nada R. Sanders, Big data driven supply chain management: A framework for implementing analytics and turning information into intelligence, Pearson Education, 2014.
- 2. Michael Watson, Sara Lewis, Peter Cacioppi, Jay Jayaraman, Supply Chain Network Design: Applying Optimization and Analytics to the Global Supply Chain, Pearson Education, 2013.
- 3. Anna Nagurney, Min Yu, Amir H. Masoumi, Ladimer S. Nagurney, Networks Against Time: Supply Chain Analytics for Perishable Products, Springer, 2013.
- 4. Muthu Mathirajan, Chandrasekharan Rajendran, Sowmyanarayanan Sadagopan, Arunachalam Ravindran, Parasuram Balasubramanian, Analytics in

Operations/Supply Chain Management, I.K. International Publishing House Pvt. Ltd., 2016.

5. Gerhard J. Plenert, Supply Chain Optimization through Segmentation and Analytics, CRC Press, Taylor & Francis Group, 2014.

CMG354

FINANCIAL ANALYTICS

LTPC 3003

OBJECTIVE:

This course introduces a core set of modern analytical tools that specifically target finance applications.

UNIT I - CORPORATE FINANCE ANALYSIS

9

Basic corporate financial predictive modelling- Project analysis- cash flow analysis- cost of capital, Financial Break even modelling, Capital Budget model-Payback, NPV, IRR.

UNIT II - FINANCIAL MARKET ANALYSIS

9

Estimation and prediction of risk and return (bond investment and stock investment) –Time series-examining nature of data, Value at risk, ARMA, ARCH and GARCH.

UNIT III - PORTFOLIO ANALYSIS

9

Portfolio Analysis – capital asset pricing model, Sharpe ratio, Option pricing models- binomial model for options, Black Scholes model and Option implied volatility.

UNIT IV - TECHNICAL ANALYSIS

q

Prediction using charts and fundamentals – RSI, ROC, MACD, moving average and candle charts, simulating trading strategies. Prediction of share prices.

UNIT V - CREDIT RISK ANALYSIS

a

Credit Risk analysis- Data processing, Decision trees, logistic regression and evaluating credit risk model.

TOTAL: 45 PERIODS

OUTCOME

The learners should be able to perform financial analysis for decision making using excel, Python and R.

REFERENCES:

- 1. Financial analytics with R by Mark J. Bennett, Dirk L. Hugen, Cambridge university press.
- 2. Haskell Financial Data Modeling and Predictive Analytics Paperback Import, 25 Oct 2013 by Pavel Ryzhov.
- 3. Quantitative Financial Analytics: The Path To Investment Profits Paperback Import, 11 Sep 2017 by Edward E Williams (Author), John A Dobelman.
- 4. Python for Finance Paperback Import, 30 Jun 2017 by Yuxing Yan (Author).
- 5. Mastering Python for Finance Paperback Import, 29 Apr 2015 by James Ma Weiming.

VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY

CES331 SUSTAINABLE INFRASTRUCTURE DEVELOPMENT

LTPC 3 0 0 3

OBJECTIVE:

• To impart knowledge about sustainable Infrastructure development goals, practices and to understand the concepts of sustainable planning, design, construction, maintenance and decommissioning of infrastructure projects.

UNIT I SUSTAINABLE DEVELOPMENT GOALS

,

Definitions, principles and history of Sustainable Development - Sustainable development goals (SDG): global and Indian – Infrastructure Demand and Supply - Environment and Development linkages - societal and cultural demands – Sustainability indicators - Performance indicators of sustainability and Assessment mechanism - Policy frameworks and practices: global and Indian – Infrastructure Project finance – Infrastructure project life cycle - Constraints and barriers for sustainable development - future directions.

UNIT II SUSTAINABLE INFRASTRUCTURE PLANNING

g

Overview of Infrastructure projects: Housing sector, Power sector, Water supply, road, rail and port transportation sector, rural and urban infrastructure. Environmental Impact Assessment (EIA), Land acquisition -Legal aspects, Resettlement &Rehabilitation and Development - Cost effectiveness Analysis - Risk Management Framework for Infrastructure Projects, Economic, demand, political, socio-environmental and cultural risks. Shaping the Planning Phase of Infrastructure Projects to mitigate risks, Designing Sustainable Contracts, Negotiating with multiple Stakeholders on Infrastructure Projects. Use of ICT tools in planning - Integrated planning - Clash detection in construction - BIM (Building Information Modelling).

UNIT III SUSTAINABLE CONSTRUCTION PRACTICES AND TECHNIQUES

Sustainability through lean construction approach - Enabling lean through information technology - Lean in planning and design - IPD (Integrated Project Delivery) - Location Based Management System - Geospatial Technologies for machine control, site management, precision control and real time progress monitoring - Role of logistics in achieving sustainable

construction – Data management for integrated supply chains in construction - Resource efficiency benefits of effective logistics - Sustainability in geotechnical practice – Design considerations, Design Parameters and Procedures – Quality control and Assurance - Use of sustainable construction techniques: Precast concrete technology, Pre-engineered buildings.

UNIT IV SUSTAINABLE CONSTRUCTION MATERIALS

q

Construction materials: Concrete, steel, glass, aluminium, timber and FRP - No/Low cement concrete - Recycled and manufactured aggregate - Role of QC and durability - Sustainable consumption — Eco-efficiency - green consumerism - product stewardship and green engineering - Extended producer responsibility — Design for Environment Strategies, Practices, Guidelines, Methods, And Tools. Eco-design strategies —Design for Disassembly - Dematerialization, rematerialization, transmaterialization — Green procurement and green distribution - Analysis framework for reuse and recycling — Typical constraints on reuse and recycling - Communication of Life Cycle Information - Indian Eco mark scheme - Environmental product declarations — Environmental marketing- Life cycle Analysis (LCA), Advances in LCA: Hybrid LCA, Thermodynamic LCA - Extending LCA - economic dimension, social dimension - Life cycle costing (LCC) - Combining LCA and LCC — Case studies

UNIT V SUSTAINABLE MAINTENANCE OF INFRASTRUCTURE PROJECTS

Case Studies - Sustainable projects in developed countries and developing nations - An Integrated Framework for Successful Infrastructure Planning and Management - Information Technology and Systems for Successful Infrastructure Management, - Structural Health Monitoring for Infrastructure projects - Innovative Design and Maintenance of Infrastructure Facilities - Capacity Building and Improving the Governments Role in Infrastructure Implementation, Infrastructure Management Systems and Future Directions. – Use of Emerging Technologies – IoT, Big Data Analytics and Cloud Computing, Artificial Intelligences, Machine and Deep Learning, Fifth Generation (5G) Network services for maintenance .

TOTAL: 45 PERIODS

OUTCOME:

On completion of the course, the student is expected to be able to

CO1 Understand the environment sustainability goals at global and Indian scenario.

CO2 Understand risks in development of projects and suggest mitigation measures.

CO3 Apply lean techniques, LBMS and new construction techniques to achieve sustainability in infrastructure construction projects.

CO4 Explain Life Cycle Analysis and life cycle cost of construction materials.

CO5 Explain the new technologies for maintenance of infrastructure projects.

REFERENCES:

- 1. Charles J Kibert, Sustainable Construction: Green Building Design & Delivery, 4th Edition, Wiley Publishers 2016.
- Steve Goodhew, Sustainable Construction Process, Wiley Blackwell, UK, 2016.
- 3. Craig A. Langston & Grace K.C. Ding, Sustainable Practices in the Built Environment, Butterworth Heinemann Publishers, 2011.
- 4. William P Spence, Construction Materials, Methods & Techniques (3e), Yesdee Publication Pvt. Ltd, 2016.
- 5. New Building Materials and Construction World magazine
- 6. Kerry Turner. R, "Sustainable Environmental Management", Principles and Practice Publisher:Belhaven Press,ISBN:1852930039.
- 7. Munier N, "Introduction to Sustainability", Springer2005
- 8. Sharma, "Sustainable Smart Cities In India: Challenges And Future Perspectives", SPRINGER, 2022.
- 9. Ralph Horne, Tim Grant, KarliVerghese, Life Cycle Assessment: Principles, Practice and Prospects, Csiro Publishing, 2009
- European Commission Joint Research Centre Institute for Environment and Sustainability: International Reference Life Cycle Data System (ILCD) Handbook -General guide for Life Cycle Assessment - Detailed guidance. Luxembourg. European Union;2010
- 11. Hudson, Haas, Uddin, Infrastructure management: integrating design, construction, maintenance, rehabilitation, and renovation, McGraw Hill, (1997).

12. GregerLundesjö, Supply Chain Management and Logistics in Construction: Delivering Tomorrow's Built Environment, Kogan Page Publishers, 2015.

CO's-PO's & PSO's MAPPING

	PO's		PSC	PSO's											
CO's	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1	2		1	1		2	3	1	1		2	1	1	2	1
2	3	1	3	2	1	2	2		1	1	1	2	2	2	2
3	2	2	3	1	1	1	1				1	1	1	3	1
4	3	1	3	2	2	1	3	1	1	1	1	2	2	2	2
5	3	1	2	2	2	2	3	1		1	1	2	2	3	2
Avg.	3	1	3	2	2	2	3	1	1	1	1	2	2	3	2

CES332 SUSTAINABLE AGRICULTURE AND ENVIRONMENTAL MANAGEMENT LTPC 3003

OBJECTIVES:

To educate the students about the issues of sustainability in agroecosystems, introduce the
concepts and principles of agroecology as applied to the design and management of
sustainable agricultural systems for a changing world.

UNIT I AGROECOLOGY, AGROECOSYSTEM AND SUSTAINABLE AGRICULTURE CONCEPTS

Ecosystem definition - Biotic *Vs.* abiotic factors in an ecosystem - Ecosystem processes - Ecological services and agriculture - Problems associated with industrial agriculture/food systems - Defining sustainability - Characteristics of sustainable agriculture - Difference between regenerative and sustainable agriculture systems

UNIT II SOIL HEALTH, NUTRIENT AND PEST MANAGEMENT

9

Soil health definition - Factors to consider (physical, chemical and biological) - Composition of healthy soils - Soil erosion and possible control measures - Techniques to build healthy soil - Management practices for improving soil nutrient - Ecologically sustainable strategies for pest and disease control

UNIT III WATER MANAGEMENT

c

Soil water storage and availability - Plant yield response to water - Reducing evaporation in agriculture - Earthworks and tanks for rainwater harvesting - Options for improving the productivity of water - Localized irrigation - Irrigation scheduling - Fertigation - Advanced irrigation systems and agricultural practices for sustainable water use

UNIT IV ENERGY AND WASTE MANAGEMENT

(

Types and sources of agricultural wastes - Composition of agricultural wastes - Sustainable technologies for the management of agricultural wastes - Useful and high value materials produced using different processes from agricultural wastes - Renewable energy for sustainable agriculture

UNIT V EVALUATING SUSTAINABILITY IN AGROECOSYSTEMS

g

TOTAL: 45 PERIODS

Indicators of sustainability in agriculture - On-farm evaluation of agroecosystem sustainability - Alternative agriculture approaches/ farming techniques for sustainable food production - Goals and components of a community food system - Case studies

OUTCOME

- On completion of the course, the student is expected to be able to
- CO1 Have an in-depth knowledge about the concepts, principles and advantages of sustainable agriculture
- CO2 Discuss the sustainable ways in managing soil health, nutrients, pests and diseases
- CO3 Suggest the ways to optimize the use of water in agriculture to promote an ecological use of resources
- CO4 Develop energy and waste management plans for promoting sustainable agriculture in

non-sustainable farming areas

CO5 Assess an ecosystem for its level of sustainability and prescribe ways of converting to a sustainable system through the redesign of a conventional agroecosystem

REFERENCES:

- 1. Approaches to Sustainable Agriculture Exploring the Pathways Towards the Future of Farming, Oberc, B.P. & Arroyo Schnell, A., IUCN, Belgium, 2020
- 2. Natural bioactive products in sustainable agriculture, Singh, J. & Yadav, A.N., Springer, 2020
- 3. Organic Farming for Sustainable Agriculture, Nandwani, D., Springer, 2016
- 4. Principles of Agronomy for Sustainable Agriculture, Villalobos, F.J. & Fereres, E., Springer, 2016
- 5. Sustainable Agriculture for Food Security: A Global Perspective, Balkrishna, A., CRC Press, 2021
- 6. Sustainable Energy Solutions in Agriculture, Bundschuh, J. & Chen, G., CRC Press, 2014

CO - PO Mapping - SUSTAINABLE AGRICULTURE PRACTICES

CO's	PO'	's		PSO	PSO's										
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3
1		2						2		2			2	2	
2		2		2	2	2					1		3	2	
3				2		2				A			3	2	3
4	3	2			2	, Y		2	2	2	2	an.	3	2	3
5		2	3	2	7		1					1		2	
Avg.	3	2	3	2	2	2	1	2	2	2	2	1,	3	2	3

1 - Low; 2 - Medium; 3 - High; '- "- No correlation

CES333

SUSTAINABLE BIOMATERIALS

LTPC 3003

OBJECTIVES

- To Impart knowledge of biomaterials and their properties
- To learn about Fundamentals aspects of Biopolymers and their applications
- To learn about bioceramics and biopolymers
- To introduce the students about metals as biomaterials and their usage as implants
- To make the students understand the significance of bionanomaterials and its applications.

UNIT I INTRODUCTION TO BIOMATERIALS

9

Introduction: Definition of biomaterials, requirements & classification of biomaterials- Types of Biomaterials- Degradable and resorbable biomaterials- engineered natural materials-Biocompatibility-Hydrogels-pyrolitic carbon for long term medical implants-textured and porous materials-Bonding types- crystal structure-imperfection in crystalline structure-surface properties and adhesion of materials –strength of biological tissues-performance of implants-tissue response to implants- Impact and Future of Biomaterials

UNIT II BIO POLYMERS

9

Molecular structure of polymers -Molecular weight - Types of polymerization techniques—Types of polymerization reactions- Physical states of polymers- Common polymeric biomaterials - Polyethylene -Polymethylmethacrylate (PMMA-Polylactic acid (PLA) and polyglycolic acid (PGA) -Polycaprolactone (PCL) - Other biodegradable polymers —Polyurethan- reactions polymers for medical purposes - Collagens- Elastin- Cellulose and derivatives-Synthetic polymeric membranes and their biological applications

UNIT III BIO CERAMICS AND BIOCOMPOSITES

9

General properties- Bio ceramics -Silicate glass - Alumina (Al2O3) -Zirconia (ZrO2)-Carbon-Calcium phosphates (CaP)- Resorbable Ceramics- surface reactive ceramics- Biomedical Composites-Polymer Matrix Compsite(PMC)-Ceramic Matrix Composite(CMC)-Metal Matrix Composite (MMC)-glass ceramics - Orthopedic implants-Tissue engineering scaffolds

UNIT IV METALS AS BIOMATERIALS

9

Biomedical metals-types and properties-stainless steel-Cobalt chromium alloys-Titanium alloys-Tantalum-Nickel titanium alloy (Nitinol)- magnesium-based biodegradable alloys-surface properties of metal implants for osteointegration-medical application-corrosion of metallic implants – biological tolerance of implant metals

UNIT V NANOBIOMATERIALS

9

Meatllicnanobiomaterials—Nanopolymers-Nanoceramics- Nanocomposites -Carbon based nanobiomaterials - transport of nanoparticles- release rate-positive and negative effect of nanosize-nanofibres-Nano and micro features and their importance in implant performance-Nanosurface and coats-Applications nanoantibiotics-Nanomedicines- Biochips — Biomimetics-BioNEMs -Biosensor-Bioimaging/Molecular Imaging- challenges and future perspective.

TOTAL: 45 PERIODS

OUTCOMES

- Students will gain familiarity with Biomaterials and they will understand their importance.
- Students will get an overview of different biopolymers and their properties
- Students gain knowledge on some of the important Bioceramics and Biocomposite materials
- Students gain knowledge on metals as biomaterials
- Student gains knowledge on the importance of nanobiomaterials in biomedical applications.

REFERENCES

- 1. C. Mauli Agrawal, Joo L. Ong, Mark R. Appleford, Gopinath Mani "Introduction to Biomaterials Basic Theory with Engineering Applications" Cambridge University Press, 2014.
- 2. Donglu shi "Introduction to Biomaterials" Tsinghua University press, 2006.
- 3. Joon Park, R.S.Lakes "Biomaterials An Introduction" third edition, Springer 2007.
- 4. M.Jaffe, W.Hammond, P.Tolias and T.Arinzeh "Characterization of Biomaterials" Wood head publishing, 2013.
- 5. Buddy D.Ratner and Allan S.Hoffman Biomaterials Science "An Introduction to Material in Medicine" Third Edition, 2013.
- 6. VasifHasirci, NesrinHasirci "Fundamentals of Biomaterials" Springer, 2018
- 7. Leopoido Javier Rios Gonzalez. "Handbook of Research on Bioenergy and Biomaterials: Consolidated and green process" Apple academic press, 2021.
- 8. Devarajan Thangadurai, Jeyabalan Sangeetha, Ram Prasad "Functional Bionanomaterials" springer, 2020.
- 9. Sujata.V.Bhat Biomaterials; Narosa Publishing house, 2002.

CES334

MATERIALS FOR ENERGY SUSTAINABILITY

LTPC 3003

OBJECTIVES

- To familiarize the students about the challenges and demands of energy sustainability
- To provide fundamental knowledge about electrochemical devices and the materials used.
- To introduce the students to various types of fuel cell
- To enable students to appreciate novel materials and their usage in photovoltaic application
- To introduce students to the basic principles of various types Supercapacitors and the materials used.

UNIT I SUSTAINABLE ENERGY SOURCES

9

Introduction to energy demand and challenges ahead – sustainable source of energy (wind, solar etc.) – electrochemical energy systems for energy harvesting and storage – materials for sustainable electrochemical systems building – India centric solutions based on locally available materials – Economics of wind and solar power generators vs. conventional coal plants – Nuclear energy

UNIT II ELECTROCHEMICAL DEVICES

g

Electrochemical Energy – Difference between primary and secondary batteries – Secondary battery (Li-ion battery, Sodium-ion battery, Li-S battery, Li-O₂ battery, Nickel Cadmium, Nickel Metal Hydride) – Primary battery (Alkaline battery, Zinc-Carbon battery) – Materials for battery (Anode materials – Lithiated graphite, Sodiated hard carbon, Silicon doped graphene, Lithium Titanate) (Cathode Materials – S, LiCoO₂, LiFePO₄, LiMn₂O₄) – Electrolytes for Lithium-ion battery (ethylene carbonate and propylene carbonate based)

UNIT III FUEL CELLS

9

Principle of operation of fuel cells – types of fuel cells (Proton exchange membrane fuel cells, alkaline fuel cell, direct methanol fuel cells, direct borohydride fuel cells, phosphoric acid fuel cells, solid oxide fuel cells, and molten carbonate fuel cells) – Thermodynamics of fuel cell – Fuel utilization – electrolyte membrane (proton conducting and anion conducting) – Catalysts (Platinum, Platinum alloys, carbon supported platinum systems and metal oxide supported platinum catalysts) – Anatomy of fuel cells (gas diffusion layer, catalyst layer, flow field plate, current conductors, bipolar plates and monopolar plates).

UNIT IV PHOTOVOLTAICS

9

Physics of the solar cell – Theoretical limits of photovoltaic conversion – bulk crystal growth of Si and wafering for photovoltaic application - Crystalline silicon solar cells – thin film silicon solar cells – multijunction solar cells – amorphous silicon based solar cells – photovoltaic concentrators – Cu(InGa)Se₂ solar cells – Cadium Telluride solar cells – dye sensitized solar cells – Perovskite solar cells – Measurement and characterization of solar cells - Materials used in solar cells (metallic oxides, CNT films, graphene, OD fullerenes, single-multi walled carbon nanotubes, two-dimensional Graphene, organic or Small molecule-based solar cells materials - copper-phthalocyanine and perylenetetracarboxylicbis - benzine – fullerenes - boron subphthalocyanine- tin (II) phthalocyanine)

UNIT V SUPERCAPACITORS

9

Supercapacitor –types of supercapacitors (electrostatic double-layer capacitors, pseudo capacitors and hybrid capacitors) - design of supercapacitor-three and two electrode cell-parameters of supercapacitor- Faradaic and non - Faradaic capacitance – electrode materials (transition metal oxides (MO), mixed metal oxides, conducting polymers (CP), Mxenes, nanocarbons, non-noble metal, chalcogenides, hydroxides and 1D-3D metal-organic frame work (MOF), activated carbon fibres (ACF)- Hydroxides-Based Materials - Polyaniline (PANI), a ternary hybrid composite- conductive polypyrrole hydrogels – Different types of nanocomposites for the SC electrodes (carbon–carbon composites, carbon-MOs composites, carbon-CPs composites and MOs-CPs composites) - Two-Dimensional (2D) Electrode Materials - 2D transition metal carbides, carbonitrides, and nitrides.

TOTAL: 45 PERIODS

OUTCOMES

- Students will acquire knowledge about energy sustainability.
- Students understand the principles of different electrochemical devices.
- Students learn about the working of fuel cells and their application.
- Students will learn about various Photovoltaic applications and the materials used.
- The students gain knowledge on different types of supercapacitors and the performance of various materials

REFERENCES

1. Functional materials for sustainable energy applications; John A. Kilner, Stephen J. Skinner, Stuart J. C. Irvine and Peter P. Edwards.

- 2. Hand Book of Fuel Cells: Fuel Cell Technology and Applications, Wolf Vielstich, Arnold Lamm, Hubert Andreas Gasteiger, Harumi Yokokawa, Wiley, London 2003.
- 3. B.E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications, Kluwer Academic / Plenum publishers, New York, 1999.
- 4. T.R. Crompton, Batteries reference book, Newners, 3rd Edition, 2002.
- 5. Materials for Supercapacitor applications; B.Viswanathan. M.Aulice Scibioh
- 6. Electrode Materials for Supercapacitors: A Review of Recent Advances, Parnia Forouzandeh, Vignesh Kumaravel and Suresh C. Pillai, catalysts 2020.
- 7. Recent advances, practical challenges, and perspectives of intermediate temperature solid oxide fuel cell cathodes Amanda Ndubuisi, Sara Abouali, Kalpana Singh and VenkataramanThangadurai, J. Mater. Chem. A, 2022.
- 8. Review of next generation photovoltaic solar cell technology and comparative materialistic development Neeraj Kant, Pushpendra Singh, Materials Today: Proceedings, 2022.

CES335

GREEN TECHNOLOGY

LTPC 3 0 0 3

COURSE OBJECTIVE:

- To acquire knowledge on green systems and the environment, energy technology and efficiency, and sustainability.
- To provide green engineering solutions to energy demand, reduced energy footprint.

UNIT I PRINCIPLES OF GREEN CHEMISTRY

9

Historical Perspectives and Basic Concepts. The twelve Principles of Green Chemistry and green engineering. Green chemistry metrics- atom economy, E factor, reaction mass efficiency, and other green chemistry metrics, application of green metrics analysis to synthetic plans.

UNIT II POLLUTION TYPES

9

Pollution – types, causes, effects, and abatement. Waste – sources of waste, different types of waste, chemical, physical and biochemical methods of waste minimization and recycling.

UNIT III GREEN REAGENTS AND GREEN SYNTHESIS

9

Environmentally benign processes- alternate solvents- supercritical solvents, ionic liquids, water as a reaction medium, energy-efficient design of processes- photo, electro and sono chemical methods, microwave-assisted reactions

UNIT IV DESIGNING GREEN PROCESSES

9

Safe design, process intensification, in process monitoring. Safe product and process design – Design for degradation, Real-time Analysis for pollution prevention, inherently safer chemistry for accident prevention

UNIT V GREEN NANOTECHNOLOGY

9

Nanomaterials for water treatment, nanotechnology for renewable energy, nanotechnology for environmental remediation and waste management, nanotechnology products as potential substitutes for harmful chemicals, environmental concerns with nanotechnology

TOTAL: 45 PERIODS

COURSE OUTCOMES

CO1: To understand the principles of green engineering and technology

CO2: To learn about pollution using hazardous chemicals and solvents

CO3: To modify processes and products to make them green and safe.

CO4: To design processes and products using green technology

CO5 – To understand advanced technology in green synthesis

TEXT BOOKS

- Green technology and design for the environment, <u>Samir B. Billatos</u>, <u>Nadia A. Basaly</u>, Taylor & Francis, Washington, DC, ©1997
- 2. Green Chemistry An introductory text M. Lancaster, RSC,2016.
- 3. Green chemistry metrics Alexi Lapkin and david Constable (Eds), Wiley publications, 2008

REFERENCE BOOKS

1. Environmental chemistry, Stanley E Manahan, Taylor and Francis, 2017

CES336 ENVIRONMENTAL QUALITY MONITORING AND ANALYSIS

LTPC 3003

OBJECTIVES:

- to understand and study the complexity of the environment in relation to pollutants generated due to industrial activity.
- To analyze the quality of the environmental parameters and monitor the same for the purpose of environmental risk assessment.

UNIT I ENVIRONMENTAL MONITORING AND STANDARDS

9

Introduction- Environmental Standards- Classification of Environmental Standards- Global Environmental Standards- Environmental Standards in India- Ambient air quality standards-water quality standard- Environmental Monitoring-Need for environmental monitoring- Concepts of environmental monitoring- Techniques of Environmental Monitoring.

UNIT II MONITORING OF ENVIRONMENTAL PARAMETERS

9

Current Environmental Issues- Global Environmental monitoring programme-International conventions- Application of Environmental Monitoring- Atmospheric Monitoring - screening parameters – Significance of environmental sampling- sampling methods – water sampling - sampling of ambient air-sampling of flue gas.

UNIT III ANALYTICAL METHODS FOR ENVIRONMENTAL MONITORING 9

Classification of Instrumental Method- Analysis of Organic Pollutants by Spectrophotometric methods -Determination of nitrogen, phosphorus and, chemical oxygen demand (COD) in sewage; Biochemical oxygen demand (BOD)- Sampling techniques for air pollution measurements; analysis of particulates and air pollutants like oxides of nitrogen, oxides of sulfur, carbon monoxide, hydrocarbon; Introduction to advanced instruments for environmental analysis

UNIT IV ENVIRONMENTAL MONITORING PROGRAMME (EMP) & RISK ASSESSMENT

9

TOTAL: 45 PERIODS

Water quality monitoring programme- national water quality monitoring- Parameters for National Water Quality Monitoring- monitoring protocol; Process of risk assessment- hazard identification- exposure assessment- dose-response assessment; risk characterization.

UNIT V AUTOMATED DATA ACQUISITION AND PROCESSING 9

Data Acquisition for Process Monitoring and Control - The Data Acquisition System - Online Data Acquisition, Monitoring, and Control - Implementation of a Data Management System - Review of Observational Networks -Sensors and transducers- classification of transducers-data acquisition system- types of data acquisition systems- data management and quality control; regulatory overview.

COURSE OUTCOMES

After completion of this course, the students will know

- CO1 Basic concepts of environmental standards and monitoring.
- CO2 the ambient air quality and water quality standards;
- CO3 the various instrumental methods and their principles for environmental monitoring
- CO4 The significance of environmental standards in monitoring quality and sustainability of the environment.
- CO5 the various ways of raising environmental awareness among the people.
- CO6 Know the standard research methods that are used worldwide for monitoring the environment.

TEXTBOOKS

- 1. Environmental monitoring Handbook, Frank R. Burden, © 2002 by The McGraw-Hill Companies, Inc.
- 2. Handbook of environmental analysis: chemical pollutants in the air, water, soil, and soild wastes / Pradyot Patnaik, © 1997 by CRC Press, Inc

REFERENCES

- 1. Environmental monitoring / edited by G. Bruce Wiersma, © 2004 by CRC Press LLC.
- 2. H. H. Willard, L. L. Merit, J. A. Dean and F. A. Settle, Instrumental Methods of Analysis, CBP Publishers and Distributors, New Delhi, 1988.
- 3. Heaslip, G. (1975) Environmental Data Handling. John Wiley & Sons. New York.

Course Articulation Matrix

Course		Program Outcomes													
Outcome	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	РО	PS	PS	PS
s	1	2	3	4	5	6	7	8	9	10	11	12	01	O2	О3
CO1	1	1	1	-	-	- 1	-	-		-	-	-	3	-	-
CO2	1	1	1	1	1	-	-	-	1		2	2	2	1	1
CO3	1	1	2	1	1	-		-	2	-	1	1	1	-	-
CO4	1	2	3	3	1	. 1	- V	-	2		3	3	1	-	-
CO5	1	1	3	2	1	- 1	- 1		3	- 1	3	1	2	-	-
CO6	3	2	3	3	2	-	-		3	3	3	3	3	1	1
Over all	3	2	3	3	2	-	- /	-	3	- 1	3	3	3	1	1

CES337 INTEGRATED ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT L T P C 3 0 0 3

COURSE OBJECTIVES:

- 1. To create awareness on the energy scenario of India with respect to world
- 2. To understand the fundamentals of energy sources, energy efficiency and resulting environmental implications of energy utilisation
- 3. Familiarisation on the concept of sustainable development and its benefits
- 4. Recognize the potential of renewable energy sources and its conversion technologies for attaining sustainable development
- 5. Acquainting with energy policies and energy planning for sustainable development

UNIT I ENERGY SCENARIO

9

Comparison of energy scenario – India and World (energy sources, generation mix, consumption pattern, T&D losses, energy demand, per capita energy consumption) – energy pricing – Energy security

UNIT II ENERGY AND ENVIRONMENT

9

Conventional Energy Sources - Emissions from fuels - Air, Water and Land pollution - Environmental standards - measurement and controls

UNIT III SUSTAINABLE DEVELOPMENT

ć

Sustainable Development: Concepts and Stakeholders, Sustainable Development Goal (SDG) - Social development: Poverty, conceptual issues and measures, impact of poverty. Globalization and Economic growth - Economic development: Economic inequalities, Income and growth.

UNIT IV RENEWABLE ENERGY TECHNOLOGY

9

Renewable Energy – Sources and Potential – Technologies for harnessing from Solar, Wind, Hydro, Biomass and Oceans – Principle of operation, relative merits and demerits

UNIT V ENERGY PLANNING FOR SUSTAINABLE DEVELOPMENT

National & State Energy Policy - National solar mission - Framework of Central Electricity Authority - National Hydrogen Mission - Energy and climate policy - State Energy Action Plan, RE integration, Road map for ethanol blending, Energy Efficiency and Energy Mix

TOTAL: 45 PERIODS

COURSE OUTCOMES:

Upon completion of this course, the students will be able to

- 1. Understand the world and Indian energy scenario
- 2. Analyse energy projects, its impact on environment and suggest control strategies
- 3. Recognise the need of Sustainable development and its impact on human resource development
- 4. Apply renewable energy technologies for sustainable development
- 5. Fathom Energy policies and planning for sustainable development.

REFERENCES:

- 1. Energy Manager Training Manual (4Volumes) available at http://www.emea.org/gbook1.asp, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India.2004
- 2. Robert Ristirer and Jack P. Kraushaar, "Energy and the environment", Willey, 2005.
- 3. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012
- 4. Twidell, J.W. & Weir A., "Renewable Energy Resources", EFNSpon Ltd., UK, 2015.
- 5. Dhandapani Alagiri, Energy Security in India Current Scenario, The ICFAI University Press, 2006.
- M.H. Fulekar, Bhawana Pathak, R K Kale, "Environment and Sustainable Development" Springer, 2016
- 7. https://www.niti.gov.in/verticals/energy

CES338 ENERGY EFFICIENCY FOR SUSTAINABLE DEVELOPMENT

LTPC 3003

COURSE OBJECTIVES:

- 1. To understand the types of energy sources, energy efficiency and environmental implications of energy utilisation
- 2. To create awareness on energy audit and its impacts
- 3. To acquaint the techniques adopted for performance evaluation of thermal utilities
- 4. To familiarise on the procedures adopted for performance evaluation of electrical utilities
- 5. To learn the concept of sustainable development and the implication of energy usage

UNIT I ENERGY AND ENVIRONMENT

Ç

Primary energy sources - Coal, Oil, Gas - India Vs World with respect to energy production and consumption, Climate Change, Global Warming, Ozone Depletion, UNFCCC, COP

UNIT II ENERGY AUDITING

9

Need and types of energy audit. Energy management (audit) approach-understanding energy costs, bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel & energy substitution, energy audit instruments

UNIT III ENERGY EFFICIENCY IN THERMAL UTILITIES

9

Energy conservation avenues in steam generation and utilisation, furnaces, Thermic Fluid Heaters. Insulation and Refractories - Commercial waste heat recovery devices: recuperator, regenerator, heat pipe, heat exchangers (Plate, Shell & Tube), heat pumps, and thermocompression

UNIT IV ENERGY CONSERVTION IN ELECTRICAL UTILITIES

ç

Demand side management - Power factor improvement - Energy efficient transformers - Energy conservation avenues in Motors, HVAC, fans, blowers, pumps, air compressors, illumination systems and cooling towers

UNIT V SUSTAINABLE DEVELOPMENT

9

Sustainable Development: Concepts and Stakeholders, Sustainable Development Goal (SDG). Globalization and Economic growth. Economic development: Economic inequalities, Income and growth. Social development: Poverty, conceptual issues and measures, impact of poverty,

TOTAL: 45 PERIODS COURSE OUTCOMES:

Upon completion of this course, the students will be able to

- 1. Understand the prevailing energy scenario
- 2. Familiarise on energy audits and its relevance
- 3. Apply the concept of energy audit on thermal utilities
- 4. Employ relevant techniques for energy improvement in electrical utilities
- 5. Understand Sustainable development and its impact on human resource development

REFERENCES:

- 1. Energy Manager Training Manual (4Volumes) available at http://www.emea.org/gbook1.asp, a website administered by Bureau of Energy Efficiency (BEE), a statutory body under Ministry of Power, Government of India.2004
- 2. Eastop.T.D& Croft D.R, "Energy Efficiency for Engineers and Technologists", Logman Scientific & Technical, ISBN-0-582-03184, 1990
- 3. W.R. Murphy and G. McKay "Energy Management" Butterworths, London 1987
- 4. Pratap Bhattacharyya, "Climate Change and Greenhouse Gas Emission", New India Publishing Agency- Nipa,2020
- 5. Matthew John Franchetti , Defne Apul "Carbon Footprint Analysis: Concepts, Methods, Implementation, and Case Studies" CRC Press,2012
- 6. Robert A. Ristinen, Jack J. Kraushaar, Jeffrey T. Brack, "Energy and the Environment", 4th Edition, Wiley, 2022
- 7. M.H. Fulekar, Bhawana Pathak, R K Kale, "Environment and Sustainable Development" Springer, 2016
- 8. Sustainable development in India: Stocktaking in the run up to Rio+20: Report prepared by TERI for MoEF, 2011.

PROGRESS THROUGH KNOWLEDGE