

### ANNA UNIVERSITY, CHENNAI NON-AUTONOMOUS COLLEGES AFFILIATED COLLEGES REGULATIONS 2021 CHOICE BASED CREDIT SYSTEM

B.TECH. PETROCHEMICAL TECHNOLOGY

### CURRICULUM FOR SEMESTERS I TO VIII AND SYLLABI FOR SEMESTERS III AND IV

| S.   | COURSE  | COURSE TITLE                                         | CATE- | PERIODS<br>PER WEEK |   | TOTAL<br>CONTACT | CREDITS          |    |
|------|---------|------------------------------------------------------|-------|---------------------|---|------------------|------------------|----|
| No.  | CODE    |                                                      | GORY  | L                   | Т | P                | PERIODS          |    |
| 1.   | IP3151  | Induction Programme                                  |       | •                   | - | - I              | -                | 0  |
| THE  | ORY     |                                                      |       |                     |   |                  | 1                |    |
| 2.   | HS3151  | Professional English – I                             | HSMC  | 3                   | 0 | 0                | 3                | 3  |
| 3.   | MA3151  | Matrices and Calculus                                | BSC   | 3                   | 1 | 0                | 4                | 4  |
| 4.   | PH3151  | Engineering Physics                                  | BSC   | 3                   | 0 | 0                | 3                | 3  |
| 5.   | CY3151  | Engineering Chemistry                                | BSC   | 3                   | 0 | 0                | 3                | 3  |
| 6.   | GE3151  | Problem Solving and Python<br>Programming            | ESC   | 3                   | 0 | 0                | IGE <sup>3</sup> | 3  |
| 7.   | GE3172  | அறிவியல் தமிழ் /<br>Scientific Thoughts in Tamil     | HSMC  | 1                   | 0 | 0                | 1                | 1  |
| PRAC | CTICALS |                                                      |       |                     |   |                  |                  |    |
| 8.   | GE3171  | Problem Solving and Python<br>Programming Laboratory | ESC   | 0                   | 0 | 4                | 4                | 2  |
| 9.   | BS3171  | Physics and Chemistry<br>Laboratory                  | BSC   | 0                   | 0 | 4                | 4                | 2  |
| 10.  | GE3172  | English Laboratory <sup>\$</sup>                     | EEC   | 0                   | 0 | 2                | 2                | 1  |
|      | TOTAL   |                                                      |       |                     |   | 10               | 27               | 22 |

SEMESTER I

\$ Skill Based Course

| S.<br>No. | COURSE  | COURSE TITLE                                                                   | CATE-<br>GORY |   | Erio<br>R Wi |    | TOTAL<br>CONTACT | CREDITS |
|-----------|---------|--------------------------------------------------------------------------------|---------------|---|--------------|----|------------------|---------|
| NO.       | CODE    |                                                                                | OONT          | L | ΤP           |    | PERIODS          |         |
| THEC      | ORY     |                                                                                |               |   |              |    |                  |         |
| 1.        | HS3251  | Professional English – II                                                      | HSMC          | 2 | 0            | 0  | 2                | 2       |
| 2.        | MA3251  | Statistics and Numerical<br>Methods                                            | BSC           | 3 | 1            | 0  | 4                | 4       |
| 3.        | PH3253  | Materials Science for<br>Technologists                                         | BSC           | 3 | 0            | 0  | 3                | 3       |
| 4.        | BE3252  | Basic Electrical, Electronics<br>and Instrumentation<br>Engineering            | BSC           | 3 | 0            | 0  | 3                | 3       |
| 5.        | CY3251  | Chemistry for Technologists                                                    | BSC           | 3 | 0            | 0  | 3                | 3       |
| 6.        | GE3251  | Engineering Graphics                                                           | ESC           | 2 | 0            | 4  | 6                | 4       |
| 7.        | GE3252  | தமிழர் மரபு  / Heritage of<br>Tamils                                           | HSMC          | 1 | 0            | 0  | 1                | 1       |
| 8.        |         | NCC Credit Course Level 1*                                                     | -             | 2 | 0            | 0  | 2                | 2       |
| PRAC      | CTICALS | 12/44                                                                          | 1             |   |              |    |                  |         |
| 7         | GE3271  | Engineering Practices<br>Laboratory                                            | ESC           | 0 | 0            | 4  | 4                | 2       |
| 8         | BE3272  | Basic Electrical, Electronics<br>and Instrumentation<br>Engineering Laboratory | ESC           | 0 | 0            | 4  | 4                | 2       |
| 9         | GE3272  | Communication Laboratory /<br>Foreign Language <sup>\$</sup>                   | EEC           | 0 | 0            | 4  | 4                | 2       |
|           |         | 5                                                                              | 17            | 1 | 16           | 34 | 26               |         |

#### SEMESTER II

#\*NCC Credit Course level 1 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA. \$ Skill Based Course

PROGRESS THROUGH KNOWLEDGE

|           | SEMESTER III   |                                                    |              |    |             |    |                  |         |  |
|-----------|----------------|----------------------------------------------------|--------------|----|-------------|----|------------------|---------|--|
| S.<br>NO. | COURSE<br>CODE | COURSE TITLE                                       | CATE<br>GORY |    | rio<br>R We | EK | TOTAL<br>CONTACT | CREDITS |  |
|           |                |                                                    | CONT         | L  | Т           | Ρ  | PERIODS          |         |  |
| THEC      | THEORY         |                                                    |              |    |             |    |                  |         |  |
| 1.        | MA3351         | Transforms and Partial Differential Equations      | BSC          | 3  | 1           | 0  | 4                | 4       |  |
| 2.        | PE3351         | Process Calculations                               | PCC          | 3  | 0           | 0  | 3                | 3       |  |
| 3.        | PC3351         | Fluid Mechanics for<br>Petrochemical Technologists | PCC          | 3  | 0           | 0  | 3                | 3       |  |
| 4.        | PC3353         | Petroleum Primary<br>Processing Technology         | PCC          | 3  | 0           | 0  | 3                | 3       |  |
| 5.        | CH3491         | Heat Transfer                                      | PCC          | 2  | 1           | 0  | 3                | 3       |  |
| 6.        | PC3352         | Mechanical Operations                              | PCC          | 3  | 0           | 0  | 3                | 3       |  |
| PRAG      | CTICALS        |                                                    |              |    |             |    | •                |         |  |
| 7.        | PE3481         | Heat Transfer Laboratory                           | PCC          | 0  | 0           | 4  | 4                | 2       |  |
| 8.        | PE3361         | Fluid Mechanics and Solid<br>Operations laboratory | PCC          | 0  | 0           | 4  | 4                | 2       |  |
| 9.        | GE33361        | Professional Development <sup>\$</sup>             | EEC          | 0  | 0           | 2  | 2                | 1       |  |
|           | 1              |                                                    | TOTAL        | 17 | 2           | 10 | 29               | 24      |  |

\$ Skill Based Course

# SEMESTER IV

| S.<br>NO. | COURSE<br>CODE     | COURSE TITLE                                     | CATE<br>GORY |       | RIO<br>R WE |   | TOTAL<br>CONTACT | CREDITS |
|-----------|--------------------|--------------------------------------------------|--------------|-------|-------------|---|------------------|---------|
| 10.       | OODL               |                                                  | GOILI        | L T P |             | Р | PERIODS          |         |
| THEC      | THEORY             |                                                  |              |       |             |   |                  |         |
| 1.        | PE3451             | Chemical Engineering<br>Thermodynamics           | PCC          | 3     | 0           | 0 | 3                | 3       |
| 2.        | PC3451             | Petroleum Secondary<br>Processing Technology     | PCC          | 3     | 0           | 0 | 3                | 3       |
| 3.        | CH3451             | Mass Transfer I                                  | PCC          | 3     | 0           | 0 | 3                | 3       |
| 4.        | PC3401             | Industrial Chemical Technology                   | PCC          | 3     | 0           | 0 | 3                | 3       |
| 5.        | CPE331             | Chemical Reaction                                | PCC          | 3     | 0           | 0 | 3                | 3       |
| 6.        | GE3451             | Environmental Sciences and Sustainability        | BSC          | 2     | 0           | 0 | 2                | 2       |
| 7.        |                    | NCC Credit Course Level 2#                       |              | 3     | 0           | 0 | 3                | 3 #     |
| PRAC      | CTICALS            |                                                  |              |       |             |   |                  |         |
| 8.        | PC3461             | Petrochemical and Polymer<br>Analysis Laboratory | PCC          | 0     | 0           | 4 | 4                | 2       |
| 9.        | PC3462             | Petroleum Product Testing<br>Laboratory          | PCC          | 0     | 0           | 4 | 4                | 2       |
| 10.       | PC3511             | Industrial Training/Internship<br>I*             | EEC          | -     | -           | - | -                | -       |
|           | TOTAL 17 0 8 25 21 |                                                  |              |       |             |   |                  |         |

# NCC Credit Course level 2 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

\*Four weeks industrial training/internship carries two credits. Industrial training/internship during IV Semester Summer Vacation will be evaluated in V semester

| S.<br>NO. | COURSE  | OURSE COURSE TITLE CATE GORY          |       |    | eric<br>R W | DS<br>EEK | TOTAL<br>CONTACT | CREDITS |
|-----------|---------|---------------------------------------|-------|----|-------------|-----------|------------------|---------|
| NO.       | CODE    |                                       | GORT  | L  | Т           | Р         | PERIODS          |         |
| THEC      | DRY     |                                       |       |    |             |           |                  |         |
| 1.        | CH3551  | Mass Transfer II                      | PCC   | 2  | 1           | 0         | 3                | 3       |
| 2.        | PC3551  | Catalytic Reaction<br>Engineering     | PCC   | 3  | 0           | 0         | 3                | 3       |
| 3.        |         | Professional Elective I               | PEC   | 3  | 0           | 0         | 3                | 3       |
| 4.        |         | Professional Elective II              | PEC   | 3  | 0           | 0         | 3                | 3       |
| 5.        |         | Professional Elective III             | PEC   | 3  | 0           | 0         | 3                | 3       |
| 6.        |         | Mandatory Course-I <sup>&amp;</sup>   | MC    | 3  | 0           | 0         | 3                | 0       |
| PRAC      | CTICALS |                                       | 1112  |    |             |           |                  |         |
| 7.        | PC3511  | Industrial Training/Internship<br>I** | EEC   | 24 |             | -         | -                | 2       |
| 8.        | CH3561  | Mass Transfer Laboratory              | PCC   | 0  | 0           | 4         | 4                | 2       |
|           |         |                                       | TOTAL | 17 | 1           | 4         | 22               | 19      |

#### SEMESTER V

<sup>&</sup> Mandatory Course-I is a Non-credit Course (Student shall select one course from the list given under MC-I) \*\*Four weeks industrial training/internship carries two credits. Industrial training/internship during IV Semester Summer Vacation will be evaluated in V semester

|           |         | SEME                                                | STER VI      |       |              |   |                  |         |
|-----------|---------|-----------------------------------------------------|--------------|-------|--------------|---|------------------|---------|
| S.<br>NO. | COURSE  | COURSE TITLE                                        | CATE<br>GORY |       | erio<br>R Wi |   | TOTAL<br>CONTACT | CREDITS |
| NO.       | CODE    |                                                     | GORT         | L T P |              | Р | PERIODS          |         |
| THEC      | DRY     |                                                     |              |       |              | A |                  | •       |
| 1.        | PC3652  | Process Instrumentation<br>Dynamics and Control     | PCC          | 3     | 0            | 0 | 3                | 3       |
| 2.        |         | Open Elective – I*                                  | OEC          | 3     | 0            | 0 | 3                | 3       |
| 3.        |         | Professional Elective IV                            | PEC          | 3     | 0            | 0 | 3                | 3       |
| 4.        |         | Professional Elective V                             | PEC          | 3     | 0            | 0 | 3                | 3       |
| 5.        |         | Professional Elective VI                            | PEC          | 3     | 0            | 0 | 3                | 3       |
| 6.        |         | Professional Elective VII                           | PEC          | 3     | 0            | 0 | 3                | 3       |
| 7.        |         | Mandatory Course-II <sup>&amp;</sup>                | MC           | 3     | 0            | 0 | 3                | 0       |
| 8.        |         | NCC Credit Course Level 3#                          |              | 3     | 0            | 0 | 3                | 3 #     |
| PRAC      | CTICALS |                                                     |              |       |              |   |                  | •       |
| 9.        | PC3611  | Chemical Reaction and<br>Process control Laboratory | PCC          | 0     | 0            | 4 | 4                | 2       |
| 10.       | PC3651  | Computational<br>Petrochemical Laboratory           | PCC          | 0     | 0            | 4 | 4                | 2       |
| 11.       | PC3711  | Industrial Training/Internship<br>II**              | EEC          | -     | -            | - | -                | _       |
|           |         |                                                     | TOTAL        | 24    | 0            | 8 | 32               | 22      |

SEMESTER VI

\*Open Elective – I shall be chosen from the emerging technologies.

\*\*Two weeks industrial training/internship carries one credit. Industrial training/Internship during VI Semester Summer Vacation will be evaluated in VII semester

<sup>&</sup> Mandatory Course-II is a Non-credit Course (Student shall select one course from the list given under MC- II)

\* NCC Credit Course level 3 is offered for NCC students only. The grades earned by the students will be recorded in the Mark Sheet, however the same shall not be considered for the computation of CGPA.

| S.<br>NO. | COURSE<br>CODE | COURSE TITLE                                       | CATE<br>GORY | PERIODS<br>PER WEEK |   | EK | TOTAL<br>CONTACT | CREDITS |
|-----------|----------------|----------------------------------------------------|--------------|---------------------|---|----|------------------|---------|
| -         |                |                                                    |              | L                   | I | Ρ  | PERIODS          |         |
| THE       |                |                                                    |              | -                   |   | -  |                  | -       |
| 1.        | PC3752         | Process Safety in<br>Petrochemical Industries      | PCC          | 3                   | 0 | 0  | 3                | 3       |
| 2.        | PC3751         | Process Equipment Design                           | PCC          | 3                   | 0 | 0  | 3                | 3       |
| 3.        | GE3791         | Human values and Ethics                            | HSMC         | 2                   | 0 | 0  | 2                | 2       |
| 4.        |                | Elective- Management #                             | HSMC         | 3                   | 0 | 0  | 3                | 3       |
| 5.        |                | Open Elective – II**                               | OEC          | 3                   | 0 | 0  | 3                | 3       |
| 6.        |                | Open Elective – III***                             | OEC          | 3                   | 0 | 0  | 3                | 3       |
| 7.        |                | Open Elective – IV***                              | OEC          | 3                   | 0 | 0  | 3                | 3       |
| PRA       | CTICALS        |                                                    |              |                     |   |    |                  |         |
| 8.        | PC3711         | Industrial<br>Training/Internship II <sup>##</sup> | EEC          | 1                   | - | Y  | 21 -             | 2       |
|           |                | A                                                  | TOTAL        | 20                  | 2 | 0  | 20               | 22      |

#### SEMESTER VII/VIII\*

\*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

\*\*Open Elective – Il shall be chosen from the emerging technologies.

\*\*\*Open Elective III and IV (Shall be chosen from the list of open electives offered by other Programmes

# Elective- Management shall be chosen from the Elective Management courses

##Two weeks industrial training/internship carries one credit. Industrial training/Internship during VI Semester Summer Vacation will be evaluated in VII semester

#### SEMESTER VIII/VII\*

| S.<br>NO. | COURSE<br>CODE | COURSE TITLE             | CATE<br>GORY | PEI<br>PER<br>L | RIOE<br>WE<br>T | -  | TOTAL<br>CONTACT<br>PERIODS | CREDITS |
|-----------|----------------|--------------------------|--------------|-----------------|-----------------|----|-----------------------------|---------|
| PRA       | CTICALS        |                          |              |                 |                 |    |                             |         |
| 1.        | PC3811         | Internship#/Project Work | EEC          | 0               | 0               | 20 | 20                          | 10      |
|           |                |                          | TOTAL        | 0               | 0               | 20 | 20                          | 10      |

\*If students undergo internship in Semester VII, then the courses offered during semester VII will be offered during semester VIII.

<sup>#</sup>15 weeks of continuous Internship in an organization carries 10 credits.

#### **TOTAL CREDITS: 166**

### **ELECTIVE – MANAGEMENT COURSES**

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                      | CATE PERIODS<br>PERWEEK |   |   |   | CREDITS |   |
|------------|----------------|---------------------------------------------------|-------------------------|---|---|---|---------|---|
| NO.        |                |                                                   | GURT                    | L | Т | Ρ | PERIODS |   |
| 1.         | GE3751         | Principles of Management                          | HSMC                    | 3 | 0 | 0 | 3       | 3 |
| 2.         | GE3752         | Total Quality Management                          | HSMC                    | 3 | 0 | 0 | 3       | 3 |
| 3.         | GE3753         | Engineering Economics and<br>Financial Accounting | HSMC                    | 3 | 0 | 0 | 3       | 3 |
| 4.         | GE3754         | Human Resource<br>Management                      | HSMC                    | 3 | 0 | 0 | 3       | 3 |
| 5.         | GE3755         | Knowledge Management                              | HSMC                    | 3 | 0 | 0 | 3       | 3 |
| 6.         | GE3792         | Industrial Management                             | HSMC                    | 3 | 0 | 0 | 3       | 3 |

### MANDATORY COURSES I

| SL.<br>NO | COURSE<br>CODE | COURSE TITLE                                | CATE PERIODS TOTAL<br>PER WEEK CONTACT |    |   |   | CREDITS |   |
|-----------|----------------|---------------------------------------------|----------------------------------------|----|---|---|---------|---|
|           |                |                                             | GORT                                   | L. | Т | Ρ | PERIODS |   |
| 1.        | MX3081         | Introduction to Women and<br>Gender Studies | MC                                     | 3  | 0 | 0 | 3       | 0 |
| 2.        | MX3082         | Elements of Literature                      | MC                                     | 3  | 0 | 0 | 3       | 0 |
| 3.        | MX3083         | Film Appreciation                           | MC                                     | 3  | 0 | 0 | 3       | 0 |
| 4.        | MX3084         | Disaster Management                         | MC                                     | 3  | 0 | 0 | 3       | 0 |

### MANDATORY COURSES II

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                                      | CATE<br>GORY | PERIODS<br>PER WEEK |   | WEEK CONTACT |         | CREDITS |
|------------|----------------|-------------------------------------------------------------------|--------------|---------------------|---|--------------|---------|---------|
| NO.        |                |                                                                   |              |                     | T | Ρ            | PERIODS |         |
| 1.         | MX3085         | Well Being with traditional practices (Yoga, Ayurveda and Siddha) | MC           | 3                   | 0 | 0            | 3       | 0       |
| 2.         | MX3086         | History of Science and Technology in India                        | MC           | 3                   | 0 | 0            | 3       | 0       |
| 3.         | MX3087         | Political and Economic<br>Thought for a Humane<br>Society         | MC           | 3                   | 0 | 0            | 3       | 0       |
| 4.         | MX3088         | State, Nation Building and Politics in India                      | MC           | 3                   | 0 | 0            | 3       | 0       |
| 5.         | MX3089         | Industrial Safety                                                 | MC           | 3                   | 0 | 0            | 3       | 0       |

#### **PROFESSIONAL ELECTIVE COURSES : VERTICALS**

| Vertical I                                        | Vertical II                                                  | Vertical III                                     | Vertical IV                        |
|---------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|------------------------------------|
| Petrochemical Process<br>Technology               | Hydrocarbon<br>Transportation and<br>Storage                 | Health, Safety and<br>Environment                | Process<br>Intensification         |
| Petrochemical Unit processes                      | Storage<br>Transportation of<br>Crude Oil and Natural<br>Gas | Fire and Explosion<br>Control                    | Multi component<br>Distillation    |
| Petroleum Exploration and Exploitation Techniques | Petroleum Corrosion<br>Technology                            | Industrial Hygiene                               | Process modelling and simulation   |
| Process equipment<br>auxiliaries & Utilities      | Piping Engineering                                           | Transportation Safety                            | Optimization of chemical Processes |
| Polymer Technology                                | Unconventional<br>Hydrocarbon sources                        | Process Hazard<br>Analysis Studies               | Modern Separation<br>Techniques    |
| Fertilizer Technology                             | Design of Pressure<br>Vessels and storage<br>Vessels         | Health Safety and<br>Environmental<br>Management | Fluidization<br>Engineering        |
| Petrochemical Derivatives                         | Natural Gas and LNG<br>Processing                            | Plant Safety and Risk<br>Management              | Process<br>Instrumentation         |

#### Registration of Professional Elective Courses from Verticals:

Professional Elective Courses will be registered in Semesters V and VI. These courses are listed in groups called verticals that represent a particular area of specialisation. Students are permitted to choose all Professional Electives from a particular vertical or from different verticals. Further, only one Professional Elective course shall be chosen in a semester horizontally (row-wise). However, two courses are permitted from the same row, provided one course is enrolled in Semester V and another in semester VI.

The registration of courses for B.E./B.Tech (Honours) or Minor degree shall be done from Semester V to VIII. The procedure for registration of courses explained above shall be followed for the courses of B.E/B.Tech (Honours) or Minor degree also. For more details on B.E./B.Tech (Honours) or Minor degree refer to Regulations 2021 Clause 4.10.

### PROFESSIONAL ELECTIVE COURSES : VERTICALS

#### VERTICAL I: PETROCHEMICAL PROCESS TECHNOLOGY

| SL. | COURSE<br>CODE COURSE TITLE CATE |                                                         | PERIODS<br>PER WEEK |   |   | TOTAL<br>CONTACT | CREDITS |   |
|-----|----------------------------------|---------------------------------------------------------|---------------------|---|---|------------------|---------|---|
| NO. |                                  |                                                         | GORY                | L | Т | Ρ                | PERIODS |   |
| 1.  | PC3001                           | Petrochemical Unit processes                            | PEC                 | 3 | 0 | 0                | 3       | 3 |
| 2.  | PC3002                           | Petroleum Exploration<br>and Exploitation<br>Techniques | PEC                 | 3 | 0 | 0                | 3       | 3 |
| 3.  | PC3003                           | Process equipment<br>auxiliaries & Utilities            | PEC                 | 3 | 0 | 0                | 3       | 3 |
| 4.  | CPE332                           | Polymer Technology                                      | PEC                 | 3 | 0 | 0                | 3       | 3 |
| 5.  | PC3004                           | Fertilizer Technology                                   | PEC                 | 3 | 0 | 0                | 3       | 3 |
| 6.  | PC3005                           | Petrochemical<br>Derivatives                            | PEC                 | 3 | 0 | 0                | 3       | 3 |

### VERTICAL II : HYDROCARBON TRANSPORTATION AND STORAGE

| SL.<br>NO. |        |                                                           |              | PERIODS<br>PER WEEK |   |   | TOTAL<br>CONTACT | CREDITS |
|------------|--------|-----------------------------------------------------------|--------------|---------------------|---|---|------------------|---------|
| NO.        |        | and 10 10 10 10 10                                        | GORT         | L.                  | Т | Ρ | PERIODS          |         |
| 1.         | CPE345 | Storage Transportation<br>of Crude Oil and<br>Natural Gas | PEC          | 3                   | 0 | 0 | 3                | 3       |
| 2.         | CPE341 | Petroleum Corrosion<br>Technology                         | PEC          | 3                   | 0 | 0 | 3                | 3       |
| 3.         | CPE343 | Piping Engineering                                        | PEC          | 3                   | 0 | 0 | 3                | 3       |
| 4.         | CPE347 | Unconventional<br>Hydrocarbon sources                     | PEC          | 3                   | 0 | 0 | 3                | 3       |
| 5.         | CPE332 | Design of Pressure<br>Vessels and storage<br>Vessels      | PEC<br>ROUGI | 3                   | Ŷ | 0 | OGE              | 3       |
| 6.         | CPE339 | Natural Gas and LNG<br>Processing                         | PEC          | 3                   | 0 | 0 | 3                | 3       |

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                     | CATE<br>GORY |   | ERIC<br>R W | DDS<br>EEK | TOTAL<br>CONTACT | CREDITS |
|------------|----------------|--------------------------------------------------|--------------|---|-------------|------------|------------------|---------|
| NO.        |                |                                                  | GORT         | L | Т           | Ρ          | PERIODS          |         |
| 1.         | CPC331         | Fire and Explosion<br>Control                    | PEC          | 3 | 0           | 0          | 3                | 3       |
| 2.         | CPE338         | Industrial Hygiene                               | PEC          | 3 | 0           | 0          | 3                | 3       |
| 3.         | CPE346         | Transportation Safety                            | PEC          | 3 | 0           | 0          | 3                | 3       |
| 4.         | CPC333         | Process Hazard<br>Analysis Studies               | PEC          | 3 | 0           | 0          | 3                | 3       |
| 5.         | CPE336         | Health Safety and<br>Environmental<br>Management | PEC          | 3 | 0           | 0          | 3                | 3       |
| 6.         | CPE344         | Plant Safety and Risk<br>Management              | PEC          | 3 | 0           | 0          | 3                | 3       |
|            |                | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~          | -            |   | 2           | ~          |                  |         |

# VERTICAL IV : PROCESS INTENSIFICATION

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                       | CATE |   | PERIODS<br>PER WEEK |   | TOTAL<br>CONTACT | CREDITS |
|------------|----------------|------------------------------------|------|---|---------------------|---|------------------|---------|
| NO.        |                |                                    | GONT | L | Т                   | Ρ | PERIODS          |         |
| 1.         | PC3006         | Multi component<br>Distillation    | PEC  | 3 | 0                   | 0 | 3                | 3       |
| 2.         | CCH331         | Process modelling and simulation   | PEC  | 3 | 0                   | 0 | 3                | 3       |
| 3.         | PC3007         | Optimization of chemical Processes | PEC  | 3 | 0                   | 0 | 3                | 3       |
| 4.         | PC3008         | Modern Separation Techniques       | PEC  | 3 | 0                   | 0 | 3                | 3       |
| 5.         | CPE335         | Fluidization<br>Engineering        | PEC  | 3 | 0                   | 0 | DGE              | 3       |
| 6.         | CPC334         | Process<br>Instrumentation         | PEC  | 3 | 0                   | 0 | 3                | 3       |

#### OPEN ELECTIVES

Students shall choose the open elective courses, such that the course contents are not similar to any other course contents/title under other course categories.

#### OPEN ELECTIVE I AND II (EMERGING TECHNOLOGIES)

To be offered other than Faculty of Information and Communication Engineering

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                | CATE<br>GORY | PEI<br>PER | RIOD<br>WE |   | TOTAL<br>CONTACT | CREDITS |
|------------|----------------|-----------------------------|--------------|------------|------------|---|------------------|---------|
| NO.        |                |                             | GONT         | L          | Т          | Ρ | PERIODS          |         |
| 1.         | OCS351         | Artificial Intelligence and | OEC          | 2          | 0          | 2 | 4                | 3       |
|            |                | Machine Learning            |              |            |            |   |                  |         |
|            |                | Fundamentals                |              |            |            |   |                  |         |
| 2.         | OCS352         | IoT Concepts and            | OEC          | 2          | 0          | 2 | 4                | 3       |
|            |                | Applications                |              |            |            |   |                  |         |
| 3.         | OCS353         | Data Science Fundamentals   | OEC          | 2          | 0          | 2 | 4                | 3       |
| 4.         | OCS354         | Augmented and Virtual       | OEC          | 2          | 0          | 2 | 4                | 3       |
|            |                | Reality                     |              | $\sim$     |            |   |                  |         |

#### **OPEN ELECTIVES – III**

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                           | CATE |   | rioi<br>R We |   | TOTAL<br>CONTACT | CREDITS |
|------------|----------------|----------------------------------------|------|---|--------------|---|------------------|---------|
|            |                |                                        | CONT | L | Т            | Ρ | PERIODS          |         |
| 1.         | OHS351         | English for                            | OEC  | 3 | 0            | 0 | 3                | 3       |
|            |                | Competitive<br>Examinations            |      |   |              | / |                  |         |
| 2.         | OCE353         | Lean Concepts, Tools<br>And Practices  | OEC  | 3 | 0            | 0 | 3                | 3       |
| 3.         | OMG352         | NGOs and<br>Sustainable<br>Development | OEC  | 3 | 0            | 0 | 3                | 3       |
| 4.         | OMG353         | Democracy and Good<br>Governance       | OEC  | 3 | 0            | 0 | 3<br>500 E       | 3       |
| 5.         | OME353         | Renewable Energy<br>Technologies       | OEC  | 3 | 0            | 0 | 3                | 3       |
| 6.         | OME354         | Applied Design<br>Thinking             | OEC  | 2 | 0            | 2 | 4                | 3       |
| 7.         | OMF351         | Reverse Engineering                    | OEC  | 3 | 0            | 0 | 3                | 3       |
| 8.         | OMF353         | Sustainable<br>Manufacturing           | OEC  | 3 | 0            | 0 | 3                | 3       |
| 9.         | OAU351         | Electric and Hybrid<br>Vehicle         | OEC  | 3 | 0            | 0 | 3                | 3       |
| 10.        | OAS352         | Space Engineering                      | OEC  | 3 | 0            | 0 | 3                | 3       |
| 11.        | OIM351         | Industrial Management                  | OEC  | 3 | 0            | 0 | 3                | 3       |
| 12.        | OIE354         | Quality Engineering                    | OEC  | 3 | 0            | 0 | 3                | 3       |
| 13.        | OSF351         | Fire Safety<br>Engineering             | OEC  | 3 | 0            | 0 | 3                | 3       |
| 14.        | OML351         | Introduction to non-                   | OEC  | 3 | 0            | 0 | 3                | 3       |

|     |        | destructive testing                                       |     |   |   |   |        |   |
|-----|--------|-----------------------------------------------------------|-----|---|---|---|--------|---|
| 15. | OMR351 | Mechatronics                                              | OEC | 3 | 0 | 0 | 3      | 3 |
| 16. | ORA351 | Foundation of                                             | OEC | 3 | 0 | 0 | 3      | 3 |
| 17. | OAE352 | Robotics<br>Fundamentals of                               | OEC | 3 | 0 | 0 | 3      | 3 |
|     |        | Aeronautical<br>engineering                               |     |   |   | - |        |   |
| 18. | OGI351 | Remote Sensing<br>Concepts                                | OEC | 3 | 0 | 0 | 3      | 3 |
| 19. | OAI351 | Urban Agriculture                                         | OEC | 3 | 0 | 0 | 3      | 3 |
| 20. | OEE352 | Electric Vehicle technology                               | OEC | 3 | 0 | 0 | 3      | 3 |
| 21. | OEI353 | Introduction to PLC<br>Programming                        | OEC | 3 | 0 | 0 | 3      | 3 |
| 22. | OBT352 | Biomedical<br>Instrumentation                             | OEC | 3 | 0 | 0 | 3      | 3 |
| 23. | OFD352 | Traditional Indian<br>Foods                               | OEC | 3 | 0 | 0 | 3      | 3 |
| 24. | OFD353 | Introduction to food processing                           | OEC | 3 | 0 | 0 | 3      | 3 |
| 25. | OPY352 | IPR for Pharma<br>Industry                                | OEC | 3 | 0 | 0 | 3      | 3 |
| 26. | OTT351 | Basics of Textile<br>Finishing                            | OEC | 3 | 0 | 0 | 3      | 3 |
| 27. | OTT352 | Industrial Engineering for Garment Industry               | OEC | 3 | 0 | 0 | 3      | 3 |
| 28. | OTT353 | Basics of Textile<br>Manufacture                          | OEC | 3 | 0 | 0 | 3      | 3 |
| 29. | OCH353 | Energy Technology                                         | OEC | 3 | 0 | 0 | 3      | 3 |
| 30. | OCH354 | Surface Science                                           | OEC | 3 | 0 | 0 | 3      | 3 |
| 31. | OPT351 | Basics of Plastics<br>Processing                          | OEC | 3 | 0 | 0 | 3      | 3 |
| 32. | OEC351 | Signals and Systems                                       | OEC | 3 | 0 | 0 | 3      | 3 |
| 33. | OEC352 | Fundamentals of<br>Electronic Devices and                 | OEC | 3 | 0 | 0 | 3      | 3 |
|     |        | Circuits                                                  |     | 0 |   | 0 | CV U C | 0 |
| 34. | OBM351 | Foundation Skills in<br>integrated product<br>Development | OEC | 3 | 0 | 0 | 3      | 3 |
| 35. | OBM352 | Assistive Technology                                      | OEC | 3 | 0 | 0 | 3      | 3 |
| 36. | OMA352 | Operations Research                                       | OEC | 3 | 0 | 0 | 3      | 3 |
| 37. | OMA353 | Algebra and Number<br>Theory                              | OEC | 3 | 0 | 0 | 3      | 3 |
| 38. | OMA354 | Linear Algebra                                            | OEC | 3 | 0 | 0 | 3      | 3 |

### **OPEN ELECTIVES – IV**

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                                    | CATE |   | ERIO<br>R We |   | TOTAL<br>CONTACT | CREDITS |
|------------|----------------|-----------------------------------------------------------------|------|---|--------------|---|------------------|---------|
| NO.        |                |                                                                 | GORY | L | Т            | Ρ | PERIODS          |         |
| 1.         | OHS352         | Project Report Writing                                          | OEC  | 3 | 0            | 0 | 3                | 3       |
| 2.         | OCE354         | Basics of Integrated<br>Water Resources<br>Management           | OEC  | 3 | 0            | 0 | 3                | 3       |
| 3.         | OMA355         | Advanced Numerical<br>Methods                                   | OEC  | 3 | 0            | 0 | 3                | 3       |
| 4.         | OMA356         | Random Processes                                                | OEC  | 3 | 0            | 0 | 3                | 3       |
| 5.         | OMA357         | Queuing and Reliability Modelling                               | OEC  | 3 | 0            | 0 | 3                | 3       |
| 6.         | OMG354         | Production and<br>Operations<br>Management for<br>Entrepreneurs | OEC  | 3 | 0            | 0 | 3                | 3       |
| 7.         | OMG355         | Multivariate Data<br>Analysis                                   | OEC  | 3 | 0            | 0 | 3                | 3       |
| 8.         | OME352         | Additive Manufacturing                                          | OEC  | 3 | 0            | 0 | 3                | 3       |
| 9.         | OME353         | New Product<br>Development                                      | OEC  | 3 | 0            | 0 | 3                | 3       |
| 10.        | OME355         | Industrial Design &<br>Rapid Prototyping<br>Techniques          | OEC  | 2 | 0            | 2 | 4                | 3       |
| 11.        | OMF352         | Micro and Precision<br>Engineering                              | OEC  | 3 | 0            | 0 | 3                | 3       |
| 12.        | OMF354         | Cost Management of<br>Engineering Projects                      | OEC  | 3 | 0            | 0 | 3                | 3       |
| 13.        | OAU352         | Batteries and<br>Management system                              | OEC  | 3 | 0            | 0 | 3                | 3       |
| 14.        | OAU353         | Sensors and Actuators                                           | OEC  | 3 | 0            | 0 | 3                | 3       |
| 15.        | OAS353         | Space Vehicles                                                  | OEC  | 3 | 0            | 0 | 3                | 3       |
| 16.        | OIM352         | Management Science                                              | OEC  | 3 | 0            | 0 | 3                | 3       |
| 17.        | OIM353         | Production Planning<br>and Control                              | OEC  | 3 | 0            | 0 | 3                | 3       |
| 18.        | OIE353         | Operations<br>Management                                        | OEC  | 3 | 0            | 0 | 3                | 3       |
| 19.        | OSF352         | Industrial Hygiene                                              | OEC  | 3 | 0            | 0 | 3                | 3       |
| 20.        | OML352         | Electrical, Electronic<br>and Magnetic<br>materials             | OEC  | 3 | 0            | 0 | 3                | 3       |
| 21.        | OML353         | Nanomaterials and applications                                  | OEC  | 3 | 0            | 0 | 3                | 3       |
| 22.        | OMR353         | Sensors                                                         | OEC  | 3 | 0            | 0 | 3                | 3       |
| 23.        | ORA352         | Foundation of<br>Automation                                     | OEC  | 3 | 0            | 0 | 3                | 3       |
| 24.        | ORA353         | Concepts in Mobile<br>Robotics                                  | OEC  | 3 | 0            | 0 | 3                | 3       |
| 25.        | OMV351         | Marine Propulsion                                               | OEC  | 3 | 0            | 0 | 3                | 3       |

| 26. | OMV352 | Marine Merchant<br>Vehicles                         | OEC | 3 | 0 | 0 | 3    | 3 |
|-----|--------|-----------------------------------------------------|-----|---|---|---|------|---|
| 27. | OMV353 | Elements of Marine<br>Engineering                   | OEC | 3 | 0 | 0 | 3    | 3 |
| 28. | OAE353 | Drone Technologies                                  | OEC | 3 | 0 | 0 | 3    | 3 |
| 29. | OGI352 | Geographical<br>Information System                  | OEC | 3 | 0 | 0 | 3    | 3 |
| 30. | OAI352 | Agriculture<br>Entrepreneurship<br>Development      | OEC | 3 | 0 | 0 | 3    | 3 |
| 31. | OEN352 | Biodiversity<br>Conservation                        | OEC | 3 | 0 | 0 | 3    | 3 |
| 32. | OEE353 | Introduction to control systems                     | OEC | 3 | 0 | 0 | 3    | 3 |
| 33. | OEI354 | Introduction to<br>Industrial Automation<br>Systems | OEC | 3 | 0 | 0 | 3    | 3 |
| 34. | OBT353 | Environment and Agriculture                         | OEC | 3 | 0 | 0 | 3    | 3 |
| 35. | OFD354 | Fundamentals of Food<br>Engineering                 | OEC | 3 | 0 | 0 | 3    | 3 |
| 36. | OFD355 | Food safety and<br>Quality Regulations              | OEC | 3 | 0 | 0 | 3    | 3 |
| 37. | OPY353 | Nutraceuticals                                      | OEC | 3 | 0 | 0 | 3    | 3 |
| 38. | OTT354 | Basics of Dyeing and<br>Printing                    | OEC | 3 | 0 | 0 | 3    | 3 |
| 39. | OTT355 | Fibre Science                                       | OEC | 3 | 0 | 0 | 3    | 3 |
| 40. | OTT356 | Garment<br>Manufacturing<br>Technology              | OEC | 3 | 0 | 0 | 3    | 3 |
| 41. | OCH353 | Energy Technology                                   | OEC | 3 | 0 | 0 | 3    | 3 |
| 42. | OCH354 | Surface Science                                     | OEC | 3 | 0 | 0 | 3    | 3 |
| 43. | OPT352 | Plastic Materials for<br>Engineers                  | OEC | 3 | 0 | 0 | 3    | 3 |
| 44. | OPT353 | Properties and Testing<br>of Plastics               | OEC | 3 | 0 | 0 | EDGE | 3 |
| 45. | OEC353 | VLSI Design                                         | OEC | 3 | 0 | 0 | 3    | 3 |
| 46. | OEC354 | Industrial IoT and Industry 4.0                     | OEC | 2 | 0 | 2 | 4    | 3 |
| 47. | OBM353 | Wearable devices                                    | OEC | 3 | 0 | 0 | 3    | 3 |
| 48. | OBM354 | Medical Informatics                                 | OEC | 3 | 0 | 0 | 3    | 3 |

### SUMMARY

|      |                            |    | Na                   | ame of th | ne Progra | amme |    |          |          |         |
|------|----------------------------|----|----------------------|-----------|-----------|------|----|----------|----------|---------|
| S.No | Subject<br>Area            |    | Credits per Semester |           |           |      |    |          |          |         |
|      |                            | I  | II                   | III       | IV        | V    | VI | VII/VIII | VIII/VII | Credits |
| 1    | HSMC                       | 4  | 3                    |           |           |      |    | 5        |          | 12      |
| 2    | BSC                        | 12 | 13                   | 4         | 2         |      |    |          |          | 31      |
| 3    | ESC                        | 5  | 8                    |           |           |      |    |          |          | 13      |
| 4    | PCC                        |    |                      | 19        | 19        | 8    | 7  | 6        |          | 59      |
| 5    | PEC                        |    | 10                   | U.        |           | 9    | 12 |          |          | 21      |
| 6    | OEC                        | ζ  |                      |           | 7         |      | 3  | 9        |          | 12      |
| 7    | EEC                        | 1  | 2                    | 1         |           | 2    | 1  | 2        | 10       | 18      |
| 8    | Non-Credit<br>/(Mandatory) | 7  |                      |           |           | V    | V  | 5        |          |         |
|      | Total                      | 22 | 26                   | 24        | 21        | 19   | 22 | 22       | 10       | 166     |

# PROGRESS THROUGH KNOWLEDGE

#### Enrollment for B.E. / B. Tech. (Honours) / Minor degree (Optional)

A student can also optionally register for additional courses (18 credits) and become eligible for the award of B.E./B.Tech. (Honours) Minor degree.

For B.E. / B. Tech. (Honours), a student shall register for the additional courses (18 credits) from semester V onwards. These courses shall be from the same vertical or a combination of different verticals of the same programme of study only.

For minor degree, a student shall register for the additional courses (18 credits) from semester V onwards. All these courses have to be in a particular vertical from any one of the other programmes, Moreover, for minor degree the student can register for courses from any one of the following verticals also.

Complete details are available in clause 4.10 of Regulations 2021.

| VERTICALS FOR MINOR DEGREE | (IN ADDITIONS TO ALL | THE VERTICALS OF OTHER |
|----------------------------|----------------------|------------------------|
|                            | PROGRAMMES)          |                        |

| Vertical I<br>Fintech and<br>Block Chain                 | Vertical II<br>Entrepreneurship                             | Vertical III<br>Public<br>Administration  | Vertical IV<br>Business<br>Data<br>Analytics      | Vertical V<br>Environment and<br>Sustainability                 |
|----------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------|
| Financial<br>Management                                  | Foundations of<br>Entrepreneurship                          | Principles of<br>Public<br>Administration | Statistics For<br>Management                      | Sustainable<br>infrastructure<br>Development                    |
| Fundamentals of Investment                               | Team Building &<br>Leadership<br>Management for<br>Business | Constitution of<br>India                  | Datamining<br>For Business<br>Intelligence        | Sustainable<br>Agriculture and<br>Environmental<br>Management   |
| Banking,<br>Financial<br>Services and<br>Insurance       | Creativity & Innovation<br>in Entrepreneurship              | Public Personnel<br>Administration        | Human<br>Resource<br>Analytics                    | Sustainable Bio<br>Materials                                    |
| Introduction to<br>Blockchain<br>and its<br>Applications | Principles of Marketing<br>Management For<br>Business       | Administrative<br>Theories                | Marketing<br>And Social<br>Media Web<br>Analytics | Materials for Energy<br>Sustainability                          |
| Fintech<br>Personal<br>Finance and<br>Payments           | Human Resource<br>Management for<br>Entrepreneurs           | Indian<br>Administrative<br>System        | Operation<br>And Supply<br>Chain<br>Analytics     | Green Technology                                                |
| Introduction to<br>Fintech                               | Financing New<br>Business Ventures                          | Public Policy<br>Administration           | Financial<br>Analytics                            | Environmental Quality<br>Monitoring and<br>Analysis             |
| -                                                        | -                                                           | -                                         | -                                                 | Integrated Energy<br>Planning for<br>Sustainable<br>Development |
| -                                                        | -                                                           | -                                         | -                                                 | Energy Efficiency for<br>Sustainable<br>Development             |

(Choice of courses for Minor degree is to be made from any one vertical of other programmes or from anyone of the following verticals)

| SL<br>N | COURSE<br>CODE | COURSE<br>CODE COURSE TITLE C.                        |     |   | PERIODS<br>PER<br>WEEK |   | TOTAL<br>CONTACT<br>PERIODS | CREDITS |
|---------|----------------|-------------------------------------------------------|-----|---|------------------------|---|-----------------------------|---------|
| О.      |                |                                                       |     | L | Т                      | Ρ | PERIODS                     |         |
| 1.      | CMG331         | Financial Management                                  | PEC | 3 | 0                      | 0 | 3                           | 3       |
| 2.      | CMG332         | Fundamentals of<br>Investment                         | PEC | 3 | 0                      | 0 | 3                           | 3       |
| 3.      | CMG333         | Banking, Financial<br>Services and Insurance          | PEC | 3 | 0                      | 0 | 3                           | 3       |
| 4.      | CMG334         | Introduction to<br>Blockchain and its<br>Applications | PEC | 3 | 0                      | 0 | 3                           | 3       |
| 5.      | CMG335         | Fintech Personal<br>Finance and Payments              | PEC | 3 | 0                      | 0 | 3                           | 3       |
| 6.      | CMG336         | Introduction to Fintech                               | PEC | 3 | 0                      | 0 | 3                           | 3       |
|         |                |                                                       |     |   |                        |   |                             |         |

#### **VERTICAL 1: FINTECH AND BLOCK CHAIN**

### VERTICAL 2: ENTREPRENEURSHIP

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                          | CATE<br>GORY | RY WEEK |   | R<br>K | TOTAL<br>CONTACT<br>PERIODS | CREDITS |
|------------|----------------|-------------------------------------------------------|--------------|---------|---|--------|-----------------------------|---------|
|            |                |                                                       |              | L       | Т | Р      |                             |         |
| 1.         | CMG337         | Foundations of<br>Entrepreneruship                    | PEC          | 3       | 0 | 0      | 3                           | 3       |
| 2.         | CMG338         | 0                                                     |              |         |   |        |                             |         |
|            |                | Leadership<br>Management for                          | PEC          | 3       | 0 | 0      | 3                           | 3       |
|            |                | Business                                              |              |         |   | r .e.  |                             |         |
| 3.         | CMG339         | Creativity & Innovation<br>in Entrepreneurship        | PEC          | 3       | 0 | 0      | 3                           | 3       |
| 4.         | CMG340         | Principles of Marketing<br>Management For<br>Business | PEC          | 3       | 0 | 0      | 3                           | 3       |
| 5.         | CMG341         | Human Resource<br>Management for<br>Entrepreneurs     | PEC          | 3       | 0 | 0      | 3                           | 3       |
| 6.         | CMG342         | Financing New<br>Business Ventures                    | PEC          | 3       | 0 | 0      | 3                           | 3       |

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                           | CATE<br>GORY |   | ERIC<br>PEF<br>WEE | 2 | TOTAL<br>CONTACT<br>PERIODS | CREDITS |
|------------|----------------|----------------------------------------|--------------|---|--------------------|---|-----------------------------|---------|
|            |                |                                        |              | L | Т                  | Ρ | PERIODS                     |         |
| 1.         | CMG343         | Principles of Public<br>Administration | PEC          | 3 | 0                  | 0 | 3                           | 3       |
| 2.         | CMG344         | Constitution of India                  | PEC          | 3 | 0                  | 0 | 3                           | 3       |
| 3.         | CMG345         | Public Personnel<br>Administration     | PEC          | 3 | 0                  | 0 | 3                           | 3       |
| 4.         | CMG346         | Administrative Theories                | PEC          | 3 | 0                  | 0 | 3                           | 3       |
| 5.         | CMG347         | Indian Administrative<br>System        | PEC          | 3 | 0                  | 0 | 3                           | 3       |
| 6.         | CMG348         | Public Policy<br>Administration        | PEC          | 3 | 0                  | 0 | 3                           | 3       |
| J. UNIVE.C |                |                                        |              |   |                    |   |                             |         |

### **VERTICAL 3: PUBLIC ADMINISTRATION**

# VERTICAL 4: BUSINESS DATA ANALYTICS

| VERTICAL 4: BUSINESS DATA ANALYTICS |                |                                             |              |                        |   |   |                             |         |
|-------------------------------------|----------------|---------------------------------------------|--------------|------------------------|---|---|-----------------------------|---------|
| SL.<br>NO.                          | COURSE<br>CODE | COURSE TITLE                                | CATE<br>GORY | PERIODS<br>PER<br>WEEK |   |   | TOTAL<br>CONTACT<br>PERIODS | CREDITS |
|                                     |                |                                             |              | L                      | Т | Ρ | FERIOD3                     |         |
| 1.                                  | CMG349         | Management                                  | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 2.                                  | CMG350         | Datamining For Business<br>Intelligence     | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 3.                                  | CMG351         | Human Resource<br>Analytics                 | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 4.                                  | CMG352         | Marketing And Social<br>Media Web Analytics | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 5.                                  | CMG353         | Operation And Supply<br>Chain Analytics     | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 6.                                  | CMG354         | Financial Analytics                         | PEC          | 3                      | 0 | 0 | 3                           | 3       |

| SL.<br>NO. | COURSE<br>CODE | COURSE TITLE                                                 | CATE<br>GORY | PERIODS<br>PER<br>WEEK |   |   | TOTAL<br>CONTACT<br>PERIODS | CREDITS |
|------------|----------------|--------------------------------------------------------------|--------------|------------------------|---|---|-----------------------------|---------|
|            |                |                                                              |              | L                      | Т | Р |                             |         |
| 1.         | CES331         | Sustainable infrastructure Development                       | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 2.         | CES332         | Sustainable Agriculture<br>and Environmental<br>Management   | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 3.         | CES333         | Sustainable Bio Materials                                    | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 4.         | CES334         | Materials for Energy<br>Sustainability                       | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 5.         | CES335         | Green Technology                                             | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 6.         | CES336         | Environmental Quality<br>Monitoring and Analysis             | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 7.         | CES337         | Integrated Energy<br>Planning for Sustainable<br>Development | PEC          | 3                      | 0 | 0 | 3                           | 3       |
| 8.         | CES338         | Energy Efficiency for<br>Sustainable<br>Development          | PEC          | 3                      | 0 | 0 | 3                           | 3       |

### VERTICAL 5: ENVIRONMENT AND SUSTAINABILITY



#### 19

#### MA3351 TRANSFORMS AND PARTIAL DIFFERENTIAL EQUATIONS

#### **OBJECTIVES:**

- To introduce the basic concepts of PDE for solving standard partial differential equations.
- To introduce Fourier series analysis which is central to many applications in engineering apart from its use in solving boundary value problems.
- To acquaint the student with Fourier series techniques in solving heat flow problems used in various situations.
- To acquaint the student with Fourier transform techniques used in wide variety of situations.
- To introduce the effective mathematical tools for the solutions of partial differential equations that model several physical processes and to develop Z transform techniques for discrete time systems.

#### UNIT - I : PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations -Solutions of standard types of first order partial differential equations - First order partial differential equations reducible to standard types-Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients of both homogeneous and non-homogeneous types.

#### UNIT - II : FOURIER SERIES

Dirichlet's conditions – General Fourier series – Odd and even functions – Half range sine series and cosine series – Root mean square value – Parseval's identity – Harmonic analysis.

#### UNIT - III : APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS 9 + 3

Classification of PDE - Method of separation of variables - Fourier series solutions of one dimensional wave equation - One dimensional equation of heat conduction - Steady state solution of two dimensional equation of heat conduction (Cartesian coordinates only).

#### UNIT - IV : FOURIER TRANSFORMS

Statement of Fourier integral theorem- Fourier transform pair - Fourier sine and cosine transforms - Properties - Transforms of simple functions - Convolution theorem -Parseval's identity.

### UNIT - V : Z - TRANSFORMS AND DIFFERENCE EQUATIONS

Z-transforms - Elementary properties - Convergence of Z-transforms - - Initial and final value theorems - Inverse Z-transform using partial fraction and convolution theorem - Formation of difference equations - Solution of difference equations using Z - transforms.

#### **OUTCOMES:**

Upon successful completion of the course, students should be able to:

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one and two dimensional heat flow problems and one dimensional wave equations.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.
- Use the effective mathematical tools for the solutions of partial differential equations by using Z transform techniques for discrete time systems.

## 9 + 3

# 9 + 3

## 9 + 3

Ρ

Т

1

L

3

С

Δ

# 9 + 3

TOTAL : 60 PERIODS

#### TEXT BOOKS:

- 1. Grewal B.S., "Higher Engineering Mathematics", 44<sup>th</sup>Edition, Khanna Publishers, New Delhi, 2018.
- 2. Kreyszig E, "Advanced Engineering Mathematics ", 10<sup>th</sup> Edition, John Wiley, New Delhi, India, 2016.

#### **REFERENCES**:

- 1. Andrews. L.C and Shivamoggi. B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 10<sup>th</sup> Edition, Laxmi Publications Pvt. Ltd, 2015.
- 3. James. G., "Advanced Modern Engineering Mathematics", 4<sup>th</sup>Edition, Pearson Education, New Delhi, 2016.
- 4. Narayanan. S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2018.
- 6. Wylie. R.C. and Barrett . L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

#### PE3351

#### **PROCESS CALCULATIONS**

#### **OBJECTIVE:**

• To teach concept of degree of freedom and its application to solution of mass and energy balance equations for single and network of units and introduce to process simulators.

#### UNIT I

Base and derived Units - Composition of Mixture and solutions - calculations of pressure, volume and temperature using ideal gas law. Use of partial pressure and pure component volume in gas calculations, applications of real gas relationship in gas calculation.

#### UNIT II

Stoichiometric principles, Application of material balance to unit operations like distillation, evaporation, crystallisation, drying etc., - Material balance with chemical reaction - Limiting and excess reactants - recycle - bypass and purging - Unsteady state material balances.

#### UNIT III

Calculation of absolute humidity, molal humidity, relative humidity and percentage humidity - Use of humidity in condensation and drying - Humidity chart, dew point.

#### UNITIV

Heat capacity of solids, liquids, gases and solutions, use of mean heat capacity in heat calculations, problems involving sensible heat and latent heats, evaluation of enthalpy.Standard heat of reaction, heats of formation, combustion, solution, mixing etc., calculation of standard heat of reaction - Effect of pressure and temperature on heat of reaction - Energy balance for systems with and without chemical reaction.

#### UNIT V

Determination of Composition by Orsat analysis of products of combustion of solid, liquid and gas fuels - Calculation of excess air from orsat technique, problems on sulphur and sulphur burning compounds - Application of Process simulators in energy and material balance problems.

TOTAL: 45 PERIODS

#### COURSE OUTCOMES: (COs)

1. Understand the fundamentals of system of units, apply ideal gas law to solve problems in pure components and mixtures.

# 9

#### 9

#### 9

# 9

LTPC

- 2. Apply stoichiometric principles to solve problems and write material balance for different process equipments.
- 3. Understand and apply basics of humidity to solve problems in humidification and other processes.
- 4. Understand and apply the basics of energy balance concepts to solve to different chemical processes.
- 5. Understand the basics of fuels and combustion, to solve problems on combustion of various fuels and also to find excess air.
- 6. Apply the above knowledge in process flow sheeting calculations.

### TEXT BOOKS:

- 1. Himmelblau, D.M., "Basic Principles and Calculations in Chemical Engineering", EEE Sixth Edition, Prentice Hall Inc., 2003
- 2. Felder, R. M. and Rousseau, R. W., "Elementary Principles of Chemical Processes",3<sup>rd</sup> Edn., John Wiley & Sons, New York, 2000.
- 3. Bhatt, B.L., Vora, S.M., "Stoichiometry ", 4th Edition, Tata McGraw-Hill (2004)

### **REFERENCES:**

- 1. Hougen O A, Watson K M and Ragatz R A, "Chemical process principles" Part I, CBS publishers (1973).
- 2. Venkatramani. V, Anatharaman. N and Meera Shariffa Begam "Process Calculations" Printice Hall of India, New Delhi,
- 3. K.V.Narayanan, B.Lakshmipathy,"Stoichiometry and Process Calculation", PHI Learning Ltd.(2013).

#### PC3351 FLUID MECHANICS FOR PETROCHEMICAL TECHNOLOGISTS L T P C 3 0 0 3

#### **OBJECTIVES:**

- To impart to the student knowledge on fluid properties, fluid statics, dynamic characteristics for through pipes and porous medium.
- To impart flow measurement and fluid machineries.

#### UNIT I PROPERTIES OF FLUIDS AND CONCEPT OF PRESSURE

Introduction – Physical properties of fluids – Types of fluids – Fluid statics and its applications - Hydrostatic equilibrium – Pressure measurement - Rheological properties of fluids.

#### UNIT II MOMEMTUM BALANCE AND ITS APPLICATIONS

Basic equation of fluid flow –Mass balance in a flowing fluid; continuity- Differential momentum balance; Equations of motion - macroscopic momentum balances -Bernoulli's equation – Correction for fluid friction – Correction for pump work - Velocity potential - Reynolds experiment and significance.

### UNIT III DIMENSIONAL ANALYSIS

The principle of dimensional homogeneity – dimensional analysis, Rayleigh method and the Pi theorem - non-dimensional action of the basic equations - similitude – relationship between dimensional analysis and similitude.

### UNIT III FLOW OF INCOMPRESSIBLE FLUIDS THROUGH DUCTS

Flow of incompressible fluids in pipes – Shear stress and skin friction in pipes -laminar flow in pipes and channels –Velocity profile and friction factor for smooth and rough pipes – Loss due to friction in pipes and Fittings – Fluidization – Mechanism – Types – General properties – Applications. Flow past immersed bodies, Drag and Drag coefficient, Flow through beds of solids – Ergun's Equation.

#### UNIT V TRANSPORTATION AND METERING

Measurement of fluid flow – Orifice meter – Venturimeter – Rotameter – Weirs and notches – Transportation of fluids – Positive displacement pumps – Rotary and Reciprocating pumps – Centrifugal pumps – Performance and characteristics.

#### **TEXT BOOKS:**

- 1. Noel de Nevers, "Fluid Mechanics for Chemical Engineers ", Second Edition, McGraw-Hill, (1991).
- 2. Munson, B. R., Young, D.F., Okiishi, T.H. "Fundamentals of Fluid Mechanics", 5th Edition", John Wiley, 2006.
- 3. McCabe W.L, Smith, J C and Harriot. P "Unit operations in Chemical Engineering", McGraw Hill, VII Edition, 2005

#### **REFERENCES:**

- 1. White, F.M., "Fluid Mechanics ", IV Edition, McGraw-Hill Inc., 1999.
- 2. James O Wilkes and Stacy G Bike, "Fluid Mechanics for Chemical Engineers' Prentice Hall PTR (International series in Chemical Engineering) (1999)

#### PC3353

#### PETROLEUM PRIMARY PROCESSING TECHNOLOGY

#### **OBJECTIVE**:

• To make the students to learn the primary refining operation of crude oil and testing of petroleum products and its treatment techniques.

#### UNIT I CRUDE OIL COMPOSITION AND CLASSIFICATION

Theories behind the Origin of petroleum – Exploration and production of petroleum – Basics of hydrocarbon chemistry - Composition of crude oil – Impurities present in crude oil - Crude oil classification and its characteristics – Crude oil properties, Crude oil assay – Indigenous and imported crudes – Crude availability Vs demands – Refining capacity of India.

#### UNIT II TESTING OF PETROLEUM PRODUCTS

IS 1448: Standard – Important commercial petroleum products: LPG, Gasoline, Kerosene, ATF, Diesel, and Lube oil - Specifications, Important testing methods and their Significance.

#### UNIT III CRUDE PROCESSING

Pretreatment of crude oil – Dehydration and desalting – Types of fractionating column - Types of trays - Flow pattern in the trays – Products separation using Atmospheric distillation - Vacuum distillation of residue products – Reflux types and its significance.

#### UNIT IV LUBE DISTILLATE TREATMENT TECHNIQUES

Lubricating oil classification and its uses - Production of lubricating oils from vacuum distillates with different treatment techniques: Solvent extraction, Deasphalting, Dewaxing, Catalytic dewaxing and Hydrofining process – Industrial Grease - Manufacture of Calcium Grease.

#### UNIT V WAX AND BITUMEN PROCESSING TECHNIQUES

Paraffinic wax: Classification and its uses, Petroleum jelly manufacture - Bitumen: Types and their properties – Bitumen Testing: Ductility, Penetration Index and Softening point - Asphalt manufacture: Air blowing technology.

### TOTAL: 45 PERIODS

#### OUTCOME:

CO1. Acquire knowledge on crude composition, types and their characteristics primary refining operations.

# 9

q

LTPC 3003

9

# 9

- CO2. Analyse the suitability of test methods to check the quality of crude oil and its products.
- CO3. Understand the concept of separating crude products using fractionating column
- CO4. Understand the significance of units present in the lube complex.
- CO5. Understand the classification, production and uses of wax and bitumen.
- CO6. Identify the role of additives added in the commercial products of petroleum.

#### TEXT BOOKS:

- 1. Ram Prasad, "Petroleum Refining Technology", Khanna Publishers.2008
- 2. Bhaskara Rao, B.K., "Modern Petroleum Refining Processes", 6th edition, Oxford and IBH Publishing Company Pvt. Ltd. 2018.

#### **REFERENCES:**

- 1. James H. Gary and Glenn E. Handwerk., "Petroleum Refining Technology and Economics", 4th Edition, Marcel Dekker Inc., 2001.
- 2. Nelson, W.L., "Petroleum Refinery Engineering", McGraw Hill Publishing Company Limited, 1985.
- 3. Hobson, G.D., "Modern Petroleum Refining Technology", 5th Edition, John Wiley Publishers, 1984

#### CH3491

#### HEAT TRANSFER

#### **OBJECTIVE:**

The course aimed to

is

□ Teach the fundamental concepts of heat transfer viz., conduction, convection, radiation, boiling and condensation and its application to the students

#### UNIT I

Importance of heat transfer in Chemical Engineering operations - Modes of heat transfer ; One dimensional steady state heat conduction through plane and composite walls, hollow cylinder and spheres - Thermal conductivity measurement-effect of temperature on thermal conductivity; Heat transfer in extended surfaces; Transient heat conduction

#### UNIT II

Concepts of heat transfer by convection - Natural and forced convection, Hydrodynamic and thermal Boundary layers; analogies between transfer of momentum and heat - Reynold's analogy, Prandtl and Colburn analogy. Dimensional analysis in heat transfer, heat transfer coefficient for flow through a pipe, flow past flat plate.

#### UNIT III

Heat Exchangers - classification and design, overall and individual film coefficients, mean temperature difference, LMTD correction factor for multiple pass exchanger, NTU and efficiency of Heat exchangers

#### **UNIT IV**

Heat transfer to fluids with phase change - heat transfer from condensing vapours, drop wise and film wise condensation, Nusselt equation for vertical and horizontal tubes, condensation of superheated vapours, Heat transfer to boiling liquids - mechanism of boiling, nucleate boiling and film boiling

#### UNIT V

Evaporation- single and multiple effect operation, material and Energy balance in evaporators, boiling point elevation, Duhring's rule. Radiation heat transfer - Black body radiation, Emissivity, Stefan - Boltzman law, Plank's law, radiation between surfaces.

#### **TOTAL: 45 PERIODS**

### LTPC 3 0 0 3

#### 11

9

#### 8

9

#### OUTCOMES:

On the completion of the course students are expected to

- CO1: To familiarize the students with the fundamental concepts of Heat Transfer. Provide the student with knowledge about heat transfer by conduction in solids for steady state
- CO2: Students will understand convective heat transfer and use of heat transfer coefficients for laminar and turbulent flows
- CO3: The course gives the student insight about boundary layer flow, laminar and turbulent flows
- CO4: Students will be able to calculate and use overall heat transfer coefficients in designing heat exchangers
- CO5: The course provides the student with knowledge about heat transfer with phase change

(Boiling and condensation) and evaporation

CO6: Students will understand radiative heat transfer including blackbody radiation and Kirchoff'slaw, and will be able to solve radiative problems apply knowledge of heat transfer to solve thermal engineering problems

#### TEXT BOOKS:

- 1. Holman, J. P., 'Heat Transfer', 10th Edn., McGraw Hill, 2010.
- 2. Ozisik, M. N., Heat Transfer: A Basic Approach, McGraw-Hill, 1984
- 3. Kern, D.Q., "Process Heat Transfer ", McGraw-Hill, 1999.
- 4. B.K. Dutta, Heat transfer principles and applications, PHI Learning PVT Ltd, 2016

#### **REFERENCES**:

1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering",6<sup>th</sup> Edn., McGraw-Hill, 2001.

2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering " Vol. I, 4th Edn., Asian Books Pvt. Ltd., India, 1998

#### PC3352

#### **MECHANICAL OPERATIONS**

L T P C 3 0 0 3

9

9

#### **OBJECTIVE:**

• To impact knowledge in the field of particle size reduction and also deals with the detail construction and working of equipment's used for mechanical operations.

#### UNIT I PARTICLE CHARACTERIZATION AND MEASUREMENT

General characteristics of solids, different techniques of size analysis- Static - Image analysis and Dynamic analysis - Light scattering techniques, shape factor, surface area determination, estimation of particle size. Advanced particle size analysis techniques. Screening methods and equipment, screen efficiency, ideal and actual screens.

#### UNIT II PARTICLE SIZE REDUCTION AND SIZE ENLARGEMENT

Laws of size reduction, energy relationships in size reduction, methods of size reduction, classification of equipments, crushers, grinders, disintegrators for coarse, intermediate and fine grinding, power requirement, work index; Advanced size reduction techniques - Nano particle fabrication - Top down approach - Bottom-up approach. Size enlargement - Importance of size enlargement, principle of granulation, briquetting, palletization, and flocculation. Fundamentals of particle generation.

### UNIT III PARTICLE SEPARATION (GAS-SOLID AND LIQUID-SOLID SYSTEM)

Gravity settling, sedimentation, thickening, elutriation, double cone classifier, rake classifier, bowl classifier. Centrifugal separation - continuous centrifuges, super centrifuges, design of basket centrifuges; industrial dust removing equipment, cyclones and hydro cyclones, electrostatic and magnetic separators, heavy media separations, floatation, jigging

### UNIT IV FILTRATION AND FILTRATION EQUIPMENTS

Theory of filtration, Batch and continuous filters, Flow through filter cake and filter media, compressible and incompressible filter cakes, filtration equipments - selection, operation and design of filters and optimum cycle of operation, filter aids.

### UNIT V MIXING AND PARTICLE HANDLING

Mixing and agitation - Mixing of liquids (with or without solids), mixing of powders, selection of suitable mixers, power requirement for mixing. Storage and Conveying of solids - Bunkers, silos, bins and hoppers, transportation of solids in bulk, Powder hazards, conveyer selection, different types of conveyers and their performance characteristics.

#### OUTCOME:

At the end of this course, the students will be able to

- 1. Determine and Estimate various properties of particulates, particle size using advanced analysis techniques
- 2. Understand the overview of equipment design used for size reduction, and understand the importance of size enlargement.
- 3. Examine and identify various separation and purification equipment for solid-solid, solidliquid and solid-gas system.
- 4. Categorize various filters and problems associated during the implementation and applications of filtration equipments
- 5. Analyze and understand the working of various types of impellers, mixers, Handling, Storage and Transportation of Solids.
- 6. Know the future challenges and obtain knowledge on various unit operations and their applications

### **TEXT BOOKS:**

- 1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 7<sup>th</sup> Edn., McGraw-Hill, 2005.
- 2. Badger W.L. and Banchero J.T., "Introduction to Chemical Engineering", Tata McGraw Hill, 1997.
- Foust, A. S., Wenzel, L.A., Clump, C.W., Naus, L., and Anderson, L.B., "Principles of Unit Operations", 2<sup>nd</sup> Edn., John Wiley & Sons, 1994.
- 4. Hiroaki Masuda , KoHigashitani and Hideto Yoshida, Powder Technology Handbook, 3<sup>rd</sup> Edition.

### **REFERENCES:**

- 1. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. II, 4<sup>th</sup> Edn., Asian Books Pvt. Ltd., India, 1998.
- 2. Christie J. Geankoplis, Transport processes and unit operations.
- 3. Sunggyu Lee, Kimberly H. Henthorn, Particle Technology and Applications.
- 4. Martin Rhodes, Introduction to Particle Technology, Second Edition.

9

**TOTAL: 45 PERIODS** 

9

PE3481

### HEAT TRANSFER LABORATORY

#### **OBJECTIVE:**

• To enable the students to develop a sound working knowledge on different types of heat transfer equipments.

### LIST OF EXPERIMENTS

- 1. Heat Transfer in a Double Pipe Heat Exchanger
- 2. Heat transfer in Shell and Tube Heat Exchanger
- 3. Heat Transfer in a Bare and Finned Tube Heat Exchanger
- 4. Heat transfer in composite wall
- 5. Heat transfer by Forced / Natural Convection
- 6. Heat Transfer by Radiation Determination of Stefan Boltzmann constant
- 7. Heat Transfer by Radiation Emissivity measurement
- 8. Heat transfer in Open Pan Evaporator
- 9. Heat transfer by Single effect evaporation / Multiple effect evaporation
- 10. Boiling Heat Transfer
- 11. Heat Transfer through Packed Bed
- 12. Heat Transfer in a Horizontal Condenser / Vertical Condenser
- 13. Heat Transfer in Helical Coils
- 14. Heat Transfer in Agitated Vessels

#### Minimum 10 experiments to be offered

#### **TOTAL: 60 PERIODS**

| LIST | OF EQUIPMENT FOR BATCH OF 30 STUDENTS                  |                       |
|------|--------------------------------------------------------|-----------------------|
| 1.   | Double Pipe Heat Exchanger                             | 1 No.                 |
| 2.   | Shell and Tube heat exchanger                          | 1 No.                 |
| 3.   | Bare and Finned Tube Heat Exchanger                    | 1 No.                 |
| 4.   | Composite wall set up                                  | 1 No.                 |
| 5.   | Natural convection set up or Forced convection set up  | 1 No.                 |
| 6.   | Stefan Boltzmann Apparatus                             | 1 No.                 |
| 7.   | Emissivity measurement set up                          | 1 No.                 |
| 8.   | Open Pan Evaporator                                    | 1 No.                 |
| 9.   | Single effect evaporator or Multiple effect evaporator | 1 No.                 |
| 10.  | Boiler                                                 | 1Compulsory equipment |
| 11.  | Packed Bed                                             | 1 No.                 |
| 12.  | Vertical Condenser or Horizontal Condenser             | 1 No.                 |
| 13.  | Helical Coil                                           | 1 No.                 |
| 14.  | Agitated Vessel                                        | 1 No.                 |
| 15.  | Jacketed vessel                                        | 1 No.                 |
|      |                                                        |                       |

#### Any 10 equipment excluding boiler

#### OUTCOME:

• Student would be able to calculate heat transfer by conduction, different types of convection using classical models for these phenomena.

### PE3361 FLUID MECHANICS AND SOLID OPERATIONS LABORATORY LTPC

#### **OBJECTIVES:**

- To learn experimentally to calibrate flow meters, find pressure loss for fluid flows and determine pump characteristics.
- Students develop a sound working knowledge on different types of crushing equipments and separation characteristics of different mechanical operation separators.

#### LIST OF EXPERIMENTS - Phase – I (minimum 5 Experiments to be conducted)

- 1. Calibration of constant and variable head meters
- 2. Open drum orifice and draining time
- 3. Flow through straight pipe
- 4. Flow through annular pipe
- 5. Flow through helical coil and spiral coil
- 6. Characteristic curves of pumps
- 7. Pressure drop studies in packed column

#### EQUIPMENT REQUIRED

- 1. Venturi meter
- 2. Orifice meter
- 3. Rotameter
- 4. Weir
- 5. Open drum with orifice
- 6. Pipes and fittings
- 7. Helical and spiral coils
- 8. Centrifugal pump
- 9. Packed column
- 10. Fluidized bed

### LIST OF EXPERIMENTS - Phase- II (minimum 5 Experiments to be conducted)

- 1. Sieve analysis
- 2. Batch filtration studies using a Leaf filter
- 3. Batch filtration studies using a Plate and Frame Filter press
- 4. Characteristics of batch Sedimentation
- 5. Reduction ratio in Jaw Crusher
- 6. Reduction ratio in Ball mill
- 7. Separation characteristics of Cyclone separator
- 8. Reduction ratio of Roll Crusher
- 9. Drop weight crusher
- 10. Drag on Sphere
- 11. Effectiveness of screen

#### EQUIPMENT REQUIRED

- 1. Sieve shaker
- 2. Leaf filter
- 3. Plate and Frame Filter Press
- 4. Sedimentation Jar
- 5. Jaw Crusher
- 6. Ball Mill
- 7. Cyclone Separator
- 8. Roll Crusher
- 9. Elutriator
- 10. Drop Weight Crusher
- 11. Sieves.

#### OUTCOMES:

• Use variable area flow meters and variable head flow meters

#### **TOTAL: 60 PERIODS**

0 0 4 2

- Analyze the flow of fluids through closed conduits, open channels and flow past immersed bodies Select pumps for the transportation of fluids based on process conditions/requirements and fluid properties.
- Determine work index, average particle size through experiments by crushers, ball mill and conducting sieve analysis.
- Design size separation equipments such as cyclone separator, sedimentation, Filters etc.

### PE3451 CHEMICAL ENGINEERING THERMODYNAMICS LTPC

#### **OBJECTIVE:**

• Students will learn PVT behaviour of fluids, laws of thermodynamics, thermodynamic property relations and their application to fluid flow, power generation and refrigeration processes.

#### UNIT I PVT RELATIONS AND FIRST LAW OF THERMODYNAMICS

Scope of thermodynamics, basic concepts and definitions, Equilibrium state and phase rule, Energy, Work, Temperature and Zeroth Law of Thermodynamics, reversible and irreversible process, Ideal gas- Equation of State involving ideal and real gas, Law of corresponding states, Compressibility chart, First Law of Thermodynamics and its consequences.

#### UNIT II SECOND LAW AND THERMODYNAMIC CORRELATIONS

Application of first Law of Thermodynamics for Flow and non-flow processes. Limitations of the first Law, statements of second Law of Thermodynamics, Thermodynamic Temperature scale, Entropy, Third law of thermodynamics. Thermodynamic Potentials, thermodynamic correlation, Maxwell relations. Clapeyron equation.

#### UNIT III SOLUTION THERMODYNAMICS

Partial molar properties, ideal and non-ideal solutions, standard states definition and choice, Gibbs-Duhem equation, activity and property change of mixing, excess properties of mixtures. Activity coefficient-composition models.

#### UNIT IV PHASE EQUILIBRIA

Phase equilibrium in ideal solution, excess Gibbs free energy models, Henry's law, fugacity, Vapor-Liquid Equilibrium at low, moderate and high pressures; bubble and dew point calculation, thermodynamic consistency test of VLE data, Phase diagrams for homogeneous systems and for systems with a miscibility gap, effect of temperature and pressure on azeotrope composition, liquid-liquid equilibrium.

#### UNIT V REACTION EQUILIBRIA

Chemical Reaction Equilibrium of single and multiple reactions, Standard Gibbs free change, equilibrium constant-effect of temperature; homogeneous gas and liquid phase reactions.

TOTAL: 45 PERIODS

#### OUTCOME:

- 1. Understand the fundamentals of system of units, apply ideal gas law to solve problems in pure components and mixtures.
- 2. Apply stoichiometric principles to solve problems and write material balance for different process equipments.
- 3. Understand and apply basics of humidity to solve problems in humidification and other processes.
- 4. Understand and apply the basics of energy balance concepts to solve to different chemical processes.

9

#### 9 b/

9

9

9

- 5. Understand the basics of fuels and combustion, to solve problems on combustion of various fuels and also to find excess air.
- 6. Apply the above knowledge to process flow sheeting in industries.

#### **TEXT BOOKS:**

- 1. Sonntag, Borgnakke, Van Wylen, Fundamentals of Thermodynamics, 7<sup>th</sup> Edition, Wiley India, New Delhi, 2009.
- 2. Narayanan, K.V. A Textbook of Chemical Engineering Thermodynamics Prentice Hall India, 2004
- 3. Smith, van Ness and Abbott, "Chemical Engineering Thermodynamics", 7<sup>th</sup> Edition, McGraw Hill, New York, 2005

#### **REFERENCES**:

- 1. S. I. Sandler, Chemical, Biochemical and Engineering Thermodynamics, Wiley New York, 2006
- 2. Y V C Rao, "Chemical Engineering Thermodynamics", Universities Press, Hyderabad 2005.
- 3. Pradeep Ahuja," Chemical Engineering Thermodynamics", PHI Learning Ltd (2009).
- 4. Gopinath Halder," Introduction to Chemical Engineering Thermodynamics", PHI Learning Ltd (2009).

#### PC3451 PETROLEUM SECONDARY PROCESSING TECHNOLOGY L T P C 3 0 0 3

### OBJECTIVE:

• Students will learn the process involving to convert one form of hydrocarbon into another form of hydrocarbon to meet the customer requirement using cracking, reforming, alklylation, isomerization and polymerization unit processes.

#### UNIT I VISBREAKING, THERMAL CRACKING AND COKING

Need and significance of Secondary Processing - Types and functions of Secondary Processing – Visbreaking: Principle - Process flow schemes - Coil type, Soaker drum Processes, operating parameters and advantages – Factors influencing visbreaking process.

Thermal Cracking: Process flow schemes, Reaction chemistry and free radical mechanisms, Factors influencing thermal cracking process.

Coking : Principle – Types – Advantages - Process flow schemes - Delayed Coking, Fluid Coking and Flexi-Coking processes - Factors influencing coking process

### UNIT II CATALYTIC CRAKING AND HYDRO CRACKING

Catalytic Cracking: Principle - Advantages - Process flow schemes - Batch process and Continuous process - Fixed bed, Moving bed and Fludized bed catalytic cracking process, Reaction chemistry and carbonium ion mechanisms, Factors influencing catalytic cracking process. Commercial Catalyst.

Hydro Cracking: Principle - Advantages - Process flow schemes - Reaction chemistry - Factors influencing hydro cracking process - Commercial Catalyst

#### UNIT III CATALYTIC REFORMING AND POLYMERIZATION

Reforming: Principle - Advantages - Process flow schemes - Batch process and Continuous process - Reaction chemistry – Favourable and unfavourable reactions - Factors influencing reforming process - Commercial Catalyst Other commercial reforming process like Platforming, Houdri Forming, Rhein Forming, Power Forming, Selecto Forming. Ultra Forming and Rex Forming Polymerization: Principle - Advantages - Process flow schemes - Reaction chemistry and mechanisms, Factors influencing polymerization process - Commercial Catalyst.

9

9

# **CO2.** Select appropriate technologies to meet the specified needs of lighter petroleum products from heavier feed

**CO3.** Select appropriate technologies and different flow sheet to get aromatic and olefin compounds from paraffinic feed and getting heavier products from lighter feed

**CO1.** Understand the need of different secondary process and demonstrate appropriate technologies available to meet the specified needs of the petroleum products.

- **CO4.** Understand different flow sheets, and appropriate technologies to maximize gasoline yield and quality.
- **CO5.** Select appropriate technologies to get cleaner products and demonstrate knowledge on various application of specialty products obtained from crude oil
- **CO6.** Acquiring knowledge on optimization of product blending for quality and quantity improvement.

#### **TEXT BOOKS:**

OUTCOME:

- 1. Jones, D.S.J. and Pujadó, P.R., Handbook of petroleum processing, Springer, The Netherlands, 2006
- 2. Nelson, W. L "Petroleum Refinery Engineering", McGraw Hill Publishing Company Limited, 1985.
- 3. Watkins, R. N "Petroleum Refinery Distillations", 2nd Edition, Gulf Publishing Company, Texas, 1981.

#### **REFERENCES**:

- 1. Parkash, S., Refining processes handbook, Gulf Professional Publishing, 2003
- Hobson, G. D "Modern Petroleum Refining Technology", 4th Edition, Institute of Petroleum, U. K. 1973.

#### UNIT IV ALKYLATION AND ISOMERIZATION

Alkylation Process: Principle - Advantages - Process flow schemes - Sulphuric Acid Alkylation, Hydrofluoric Acid Alkylation - Reaction chemistry, Factors influencing alkylation process - catalyst selection.

Isomerization Process: Principle - Advantages - Process flow schemes - Platinum Catalyst and Aluminium Chloride Process - Reaction chemistry, Factors influencing alkylation process - catalyst selection.

#### UNIT V FINAL TREATMENT TECHNIQUES

Acid gas and Sulphur Removal Techniques: Hydro Desulphurization Processes, Merox process, Metal Oxide process-Iron sponge process, Zinc Oxide process – Chem sweet process, Sulfa Check process, Amine process / Girbotol process and Molecular sieve process. Sulphur recovery using claus process.

#### TOTAL : 45 PERIODS

9

#### CH3451

#### **OBJECTIVE:**

#### The course is aimed to

Learn and determine mass transfer rates under laminar and turbulent conditions and apply these concepts in the design of humidification columns, dryers and crystallisers.

MASS TRANSFER I

#### UNIT I MOLECULAR DIFFUSION

Introduction to mass transfer operations. Molecular diffusion in gases, liquids and solids. Diffusivity measurement and prediction; multi-component diffusion.

#### UNIT II **CONVECTIVE TRANSFER AND INTERPHASE MASS TRANSFER**

Eddy diffusion, concept of mass transfer coefficients, theories of mass transfer, different transport analogies, application of correlations for mass transfer coefficients, inter phase mass transfer, relationship between individual and overall mass transfer coefficients. NTU and NTP concepts, Stage-wise and differential contractors.

#### HUMIDIFICATION OPERATIONS UNIT III

Humidification - Equilibrium, humidity chart, adiabatic and wet bulb temperatures; humidification operations; theory and design of cooling towers, dehumidifiers and humidifiers using enthalpy transfer unit concept.

#### UNIT IV DRYING

Drying - Equilibrium. Classification of dryers, batch drying - Mechanism and time of cross through circulation drving, theoretical estimation of drving rate and time. Continuous drvers - material and energy balance. Advance drying techniques such as freeze drying, microwave drying

#### UNIT V **CRYSTALLIZATION**

Crystal geometry. Equilibrium, yield and purity of products, theory of super saturation, nucleation and crystal growth, classification of crystallizers, design of batch crystallizers and continuous crystallizers.

#### **OUTCOMES:**

On the completion of the course students are expected to

- Understand the fundamentals, types and mechanism of mass transfer operations CO1:
- CO2: Understand the theories of mass transfer and the concept of inter-phase mass transfer
- CO3: Understand the basics of humidification process and its application
- CO4: Understand the concept and mechanism of drying operations
- CO5: Understand the concept of crystallization process and identification of suitable crystallizer

Formulate and solve material balances for unit operations such as humidification, drying CO6: and crystallization operations.

#### **TEXT BOOKS:**

1. Treybal, R. E., "Mass Transfer Operations", 3rd Edition, McGraw-Hill, 2017.

2. Geankoplis, C.J., "Transport Processes and Unit Operations", 4th Edition, Prentice Hall Inc., NewJersey, 2003.

3. Narayanan K.V. and Lakshmikutty, B "Mass Transfer - Theory and Applications", 1st Edition, CBS Publishers & Distributors Pvt Ltd, New Delhi, 2014.

#### **REFERENCES:**

1. McCabe, W.L., Smith, J.C., and Harriot, P., "Unit Operations in Chemical Engineering", 7th Edition., McGraw-Hill, 2005.

2. Coulson, J.M. and Richardson, J.F., "Chemical Engineering" Vol. I and II, 5th Edition, Asian Books Pvt. Ltd., India, 2002.

3. Seader J.D. and Henley E.J., "Separation Process Principles", 4th Ed., John Wiley, 2016

9

9

g

#### **TOTAL: 45 PERIODS**

# 9

9

#### LTPC 300 3

### PC3401 INDUSTRIAL CHEMICAL TECHNOLOGY

#### **OBJECTIVES**

The course is aimed to Impart knowledge about unit process and unit operations in various industries. Develop understanding of manufacturing process flow drawing for the manufacturing chemical processes, its applications and major engineering problems encountered in the process

### UNIT I CHLORO- ALKALI INDUSTRIES

Introduction to chemical processing; symbolic representation of different unit operations and unit processes to build a flow sheet; Chlor - alkali Industries: Manufacture of Soda ash, Manufacture of caustic soda and chlorine - common salt.

### UNIT II ACIDS

Sulphur and Sulphuric acid: Mining of sulphur and manufacture of sulphuric acid, Manufacture of hydrochloric acid. Phosphate rock, phosphoric acid.

### UNIT III PULP, PAPER, SUGAR AND STARCH INDUSTRIES

Pulp – Methods of production – Comparison of pulping processes. Paper – types of paper products, Raw materials, Methods of production. Sugar – Methods of production – by products of the Sugar industry – Starch – Methods of production, Starch derivations.

### UNIT IV CEMENT AND INDUSTRIAL GASES

Cement – properties of Cement – Methods of production – Fuel Gases – Producer gas, Water gas, Coke oven gas, Natural gas, Liquefied natural gas – Industrial gases – Carbon dioxide, hydrogen, nitrogen and oxygen.

### UNIT V FERTILIZER INDUSTRY

Fertilizers: Nitrogen Fertilizers; Synthetic ammonia, nitric acid, Urea, Phosphorous Fertilizers: super phosphate and Triple Super phosphate

#### TOTAL: 45 PERIODS

#### OUTCOMES:

On the completion of the course students are expected to

CO1: Understand the various unit operations and processes with their symbols.

CO2: Understand the various chemical reactions involved in the process

CO3: Understand the manufacturing process involved

CO4: Know to draw the process Flow sheet and understand the major engineering problems encountered in the processes

CO5: Learn manufacturing processes of organic and Inorganic Chemicals and its applications.

CO6: Understand the role of chemical Engineering in the production

#### TEXT BOOKS:

- 1. M. Gopal Rao, Marshall Sittig Dryden's Outlines of Chemical technology, III Ed., Affiliate East West press, 2018.
- 2. Austin G.T., "Shreve's Chemical Process Industries", 5th Edition, McGraw-Hill International Book Company, Singapore, 2012.

#### **REFERENCES**:

- 1. Moulin, J.A., M. Makkee, and Diepen, A.V., Chemical Process Technology, Wiley, 2001.
- 2. Srikumar Koyikkal,"Chemical Process Technology and Simulation", PHI Learning Ltd (2013).
- 3. Mark W.V. and Bhatia S.C., "Chemical Process Industries", Volume-I and II, 2nd Edition, CBS Publishers and Distributors, New Delhi, 2007.

9

9

9

# 9

9

### c

LTPC

#### CHEMICAL REACTION ENGINEERING

#### **OBJECTIVE:**

**CPE331** 

To enable the students to gain knowledge on different types of chemical reactors, the • design of chemical reactors under isothermal and non-isothermal conditions

#### UNIT I KINETICS OF HOMOGENEOUS REACTIONS

Rate equation, elementary, non-elementary reactions, theories of reaction rate - Arrhenius theory, interpretation of kinetic data, integral and differential analysis.

#### UNIT II **IDEAL REACTORS**

Design equation for constant and variable volume batch reactors. Design of continuous reactors stirred tank and tubular flow reactor, recycle reactors, combination of reactors-Equal sized CSTRs in series and parallel - Equal sized PFRs in series and parallel, size comparison of reactors.

#### UNIT III **MULTIPLE REACTIONS**

Design of reactors for multiple reactions - Series, parallel Reactions - factors affecting choice, optimum yield and conversion, selectivity, reactivity.

#### UNIT IV NON-ISOTHERMAL REACTORS

Heats of reaction and equilibrium conversion from thermodynamics, Non-isothermal homogeneous reactor systems, adiabatic reactors, Material and energy balances in batch reactors, Material and energy balances in plug flow and mixed flow reactors.

#### UNIT V **NON-IDEAL REACTORS**

Residence time distribution as a factor of performance; residence time functions and relationship between them in reactors; basic models for non-ideal flow-single parameter model, conversion in non-ideal reactors.

#### OUTCOMES:

- 1. Apply the principles of reaction kinetics, formulate rate equations and analyze the batch reactor data.
- 2. Analyze the experimental kinetic data to select a suitable reactor for a particular application and to workout conversion and space time for different types of reactors.
- 3. Evaluate selectivity, reactivity and yield for parallel and mixed reactions.
- 4. Design isothermal and non-isothermal reactors for homogeneous reactions.
- 5. Examine how far real reactors deviate from the ideal reactors.
- 6. Solve the complex reaction engineering problems.

#### **TEXT BOOKS:**

- 1. Levenspiel O, "Chemical Reaction Engineering", Wiley Eastern Ltd., III Edition, 2000.
- 2. Smith, J.M, "Chemical Engineering Kinetics", McGraw Hill, III Edition, 1981.
- 3. Fogler.H.S., "Elements of Chemical Reaction Engineering", Prentice Hall of India Ltd., III Edition, 2000.

#### **REFERENCE:**

1. Froment. G.F. & K.B.Bischoff, "Chemical Reactor Analysis and Design", John Wiley and Sons, III Edition, 2010.

9

9

### 9

9

# 9

**TOTAL: 45 PERIODS** 

energy conversion. Concept, origin and power plants of geothermal energy.

Development, GDP, Sustainability- concept, needs and challenges-economic, social and aspects of sustainability-from unsustainability to sustainability-millennium development goals, and protocols-Sustainable Development Goals-targets, indicators and intervention areas Climate change- Global, Regional and local environmental issues and possible solutions-case studies. Concept of Carbon Credit, Carbon Footprint. Environmental management in industry-A case study.

#### UNIT - V : SUSTAINABILITY PRACTICES

Zero waste and R concept, Circular economy, ISO 14000 Series, Material Life cycle assessment, Environmental Impact Assessment. Sustainable habitat: Green buildings, Green materials, Energy efficiency, Sustainable transports. Sustainable energy: Non-conventional Sources, Energy Cycles-carbon cycle, emission and sequestration, Green Engineering: Sustainable urbanization-Socio-economical and technological change.

#### TEXT BOOKS:

- 1. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers ,2018.
- 2. Benny Joseph, 'Environmental Science and Engineering', Tata McGraw-Hill, New Delhi, 2016.
- 3. Gilbert M.Masters, 'Introduction to Environmental Engineering and Science', 2nd edition, Pearson Education, 2004.
- 4. Allen, D. T. and Shonnard, D. R., Sustainability Engineering: Concepts, Design and Case Studies, Prentice Hall.
- 5. Bradley, A.S; Adebayo, A.O., Maria, P. Engineering applications in sustainable design and development, Cengage learning.
- 6. Environment Impact Assessment Guidelines, Notification of Government of India, 2006.
- 7. Mackenthun, K.M., Basic Concepts in Environmental Management, Lewis Publication, London, 1998.

#### **REFERENCE BOOKS:**

1. R.K. Trivedi, 'Handbook of Environmental Laws, Rules, Guidelines, Compliances and Standards', Vol. I and II, Enviro Media. 38 .

#### GE3451 ENVIRONMENTAL SCIENCES AND SUSTAINABILITY LTP 2 0 0 2

### UNIT - I : ENVIRONMENT AND BIODIVERSITY

Definition, scope and importance of environment - need for public awareness. Eco-system and Energy flow- ecological succession. Types of biodiversity: genetic, species and ecosystem diversity-values of biodiversity, India as a mega-diversity nation - hot-spots of biodiversity threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts - endangered and endemic species of India - conservation of biodiversity: In-situ and ex-situ.

#### UNIT – II : ENVIRONMENTAL POLLUTION

Causes, Effects and Preventive measures of Water, Soil, Air and Noise Pollutions. Solid, Hazardous and E-Waste management. Case studies on Occupational Health and Safety Management system (OHASMS). Environmental protection, Environmental protection acts.

Energy management and conservation, New Energy Sources: Need of new sources. Different types new energy sources. Applications of Hydrogen energy. Ocean energy resources. Tidal

UNIT - III: RENEWABLE SOURCES OF ENERGY.

UNIT - IV : SUSTAINABILITY AND MANAGEMENT

TOTAL: 30 PERIODS

6

6

6

С

- 2. Cunningham, W.P. Cooper, T.H. Gorhani, 'Environmental Encyclopedia', Jaico Publ., House, Mumbai, 2001.
- 3. Dharmendra S. Sengar, 'Environmental law', Prentice hall of India PVT. LTD, New Delhi, 2007.
- 4. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, 2005.
- 5. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

### PC3461 PETROCHEMICAL AND POLYMER ANALYSIS LABORATORY LTPC

#### 0 0 4 2

### **OBJECTIVE:**

• To learn basic principles involved in analysis of petrochemical products.

### LIST OF EXPERIMENTS (Any 12 Experiments)

- 1) Refractive index of petrochemicals
- 2) Flash and Fire point determination using Cleveland Open cup method
- 3) Flash and Fire point determination using Pensky Martien Closed cup method
- 4) Kinematic viscosity determination using Redwood
- 5) Kinematic viscosity determination using Saybolt
- 6) Determination of moisture content KF titrator
- 7) Total acidity determination
- 8) Solvent Recovery from petrochemical feed stock
- 9) Elemental analysis of petrochemicals using GC / NMR
- 10) Functional group analysis of petrochemicals using UV / FTIR
- 11) Flue gas Analysis Orsat Apparatus/Digital flue gas analyzer.
- 12) Determination of Density, Apparent Density of Polymer
- 13) Identification of Polymers : Plastics and Rubber PE/PP/PS/PVC/PET/ NR/SBR/IR
- 14) Determination of hardness of Polymers
- 15) Determination of Glass Transition Temperature (Tg) / Melting Point, (Tm) of Polymers
- 16) Determination of molecular weight by end group analysis (COOH group) / viscosity method.

#### TOTAL: 45 PERIODS

#### OUTCOME:

- **CO1.** Perform the testing of various physical properties of the petroleum products in a safe manner.
- **CO2.** Perform the testing of various chemical properties of the petroleum products in a safe manner.
- **CO3.** Differentiate various petroleum products by performing the specific tests.
- **CO4.** Perform the advanced qualitative and quantitative laboratory tasks, including the operation of advanced analytical instrumentation.
- **CO5.** Ability to communicate and perform in the team
- **CO6.** Ability to understand the theoretical knowledge

#### LIST OF EQUIPMENT FOR BATCH OF 30 STUDENTS

- 1. Refractometer
- 2. Cleveland Open cup Flash and fire point apparatus
- 3. Pensky Martien Flash and fire point apparatus

- 4. Redwood Viscometer
- 5. Saybolt Viscometer
- 6. KF-Titrator
- 7. Rotary vacuum evaporator.
- 8. UV- Visible spectrophotometer/FTIR.
- 9. Gas Chromatography with MS/NMR with MS
- 10. Sulphur content determination instrument
- 11. Orsat apparatus/ Digital flue gas analyzer
- 12. Durometer
- 13. Melting point apparatus

#### PC3462 PETROLEUM PRODUCT TESTING LABORATORY L T P C

#### **OBJECTIVE:**

• On completion of the course, the students should be conversant with the theoretical principles and experimental procedures for quantitative estimation of petroleum products.

#### LIST OF EXPERIMENTS (Any 12 Experiments)

- 1. Specific gravity determination using API gravity / Specific gravity bottle method
- 2. Carbon residue determination Canrodson / Rams bottom method
- 3. Dynamic viscosity measerment / Kinematic viscosity by U-Tube viscometer
- 4. Moisture content determination using Dean & Stark / Centrifuge method
- 5. ASTM Distillation to identify petroleum fractions and find out boiling range
- 6. Aniline point determination
- 7. Copper strip corrosion testing of petroleum products
- 8. Cloud and Pour point determination
- 9. Smoke point determination
- 10. Reid-Vapor pressure determination of gasoline
- 11. BS&W separation using Centrifuge method
- 12. Drop point determination for industrial grease
- 13. Softening point determination
- 14. Ductility of bitumen Determination
- 15. Penetration index determination
- 16. Calorific value of petrochemical product

### TOTAL: 45 PERIODS

0042

#### OUTCOME:

- **CO1.** Perform the testing of various physical properties of the petroleum products in a safe manner.
- **CO2.** Perform the testing of various chemical properties of the petroleum products in a safe manner.
- **CO3.** Differentiate various petroleum products by performing the specific tests.
- **CO4.** Perform the advanced qualitative and quantitative laboratory tasks, including the operation of advanced analytical instrumentation.
- **CO5.** Ability to communicate and perform in the team
- **CO6.** Ability to understand the theoretical knowledge

#### LIST OF EQUIPMENT

- 1. Hydrometer
- 2. Conradson Apparatus / Muffle furnace
- 3. Brook Field viscometer
- 4. Dean and Stark apparatus
- 5. ASTM Distillation apparatus

- Aniline point apparatus
  Copper corrosion apparatus
  Cloud and Pour point apparatus
  Smoke point apparatus
  Reid -Vapour pressure apparatus
  Centrifuge apparatus

- Drop point apparatus
  Ring and ball softening point apparatus
- 14. Ductilometer
- 15. Penetrometer
- 16. Bomb calorimeter

